首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(lactic acid) (PLA) and poly[(butylene adipate)‐co‐terephthalate] (PBAT) are both commonly used biodegradable polymers. In this study, co‐extrusion of PLA and PBAT was used to create alternately multilayered films in order to obtain high‐flexibility PLA film. The incorporation of PBAT provides enhanced flexibility to PLA and the effect is more distinct in the PLA/PBAT multilayer film as the number of layers increases. Through differential scanning calorimetric and wide‐angle X‐ray scattering analyses, the crystallinity of PLA is shown to decrease more in the multilayer film than in the blended film. Transparency is also enhanced in the multilayer film. The fabrication of alternate multilayered film by co‐extrusion of PLA and PBAT shows a new method of preparing a flexible, transparent and fully biodegradable film, which is impossible through a blending process. © 2014 Society of Chemical Industry  相似文献   

2.
Poly(lactic acid) (PLA)/poly[(butylene adipate)‐co‐terephthalate] (PBAT) blends were fabricated by melt blending, with 2,2′‐(1,3‐phenylene)bis(2‐oxazoline) (BOZ) and phthalic anhydride (PA) used as compatibilizers. It was found that a small amount of BOZ or PA greatly increased the elongation at break of the PLA/PBAT blends without sacrificing their high tensile strength. Scanning electron microscopy results revealed that the PBAT particles became finer and were uniformly dispersed in the matrix when the compatibilizers were incorporated, which indicated that the interfacial bonding and compatibilization between PLA and PBAT were improved in the presence of the compatibilizers. Compared with PLA/PBAT blends, the molecular weight of PLA/PBAT/PA/BOZ blends was increased due to chain‐extending reactions. Differential scanning calorimetry results suggested PBAT decreased the crystallization rate and crystallinity of PLA in the blends. Moreover, the glass transition temperature of PBAT was further decreased when the compatibilizers were used. © 2013 Society of Chemical Industry  相似文献   

3.
The effect of organically modified clay on the morphology and properties of poly(propylene) (PP) and poly[(butylene succinate)‐co‐adipate] (PBSA) blends is studied. Virgin and organoclay modified blends were prepared by melt‐mixing of PP, PBSA and organoclay in a batch‐mixer at 190 °C. Scanning electron microscopy studies revealed a significant change in morphology of PP/PBSA blend in the presence of organoclay. The state of dispersion of silicate layers in the blend matrix was characterized by X‐ray diffraction and transmission electron microscopic observations. Dynamic mechanical analysis showed substantial improvement in flexural storage modulus of organoclay‐modified blends with respect to the neat polymer matrices or unmodified blends. Tensile properties of virgin blends also improved in the presence of organoclay. Thermal stability of virgin blends in air atmosphere dramatically improved after modification with organoclay. The effect of organoclay on the melt‐state liner viscoelastic properties of virgin blends was also studied. The non‐isothermal crystallization behavior of homopolymers, virgin, and organoclay‐modified blends were studied by differential scanning calorimeter. The effect of incorporation of organoclay on the cold crystallization behavior of PP/PBSA blends is also reported.

  相似文献   


4.
5.
A new method is described to prepare composites of poly[(butylene succinate)‐co‐(butylene adipate)] (PBSA) with an organophilic clay having a particular functional group, namely twice‐functionalized organoclay (TFC). TFCs were produced by treating Cloisite 25A® with (glycidyloxypropyl)trimethoxy silane (GPS) or (methacryloyloxypropyl)trimethoxy silane (MPS). Reaction of the silane compound with the organoclay surface was monitored by Fourier‐transform infrared spectroscopy (FTIR). PBSA composites with the three different clays were prepared successfully via melt mixing. The d spacing and the morphology of the composites were monitored by X‐ray diffraction and by transmission electron microscopy. The linear storage modulus of the composites in the melt state increased significantly as a result of incorporation of TFC. Tensile modulus and strength at break of PBSA/TFC–GPS and those of PBSA/TFC–MPS were far superior to those of PBSA/C25A. Copyright © 2005 Society of Chemical Industry  相似文献   

6.
Blown films from poly(butylene adipate‐co‐terephthalate) and poly(lactide) (PLA) blends were investigated. The blends were prepared in a twin‐screw extruder, in the presence of small amounts of dicumyl peroxide (DCP). The influence of DCP concentration on film blowing, rheological, mechanical, and thermal properties of the blends is reported in this article. Rheological results showed a marked increase in polymer melt strength and elasticity with the addition of DCP. As a consequence, the film homogeneity and the stability of the bubble were improved. The modified blend films, compared with the unmodified blend, showed an improvement in tensile strength and modulus with a slight loss in elongation. Fourier transform infrared and gel results revealed that chain scission and branching were more significant than crosslinking when the DCP loadings in the blends were not higher than 0.7%. A reduction in melt temperatures of PLA was observed due to difficulty in chain crystallization. The concentrations of DCP strongly affected the melting temperatures but had an insignificant effect on the decomposition behavior of the blends. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

7.
8.
BACKGROUND: Poly(butylene adipate‐co‐terephthalate) (PBAT) has attracted wide interest as a biodegradable polymer. However, its use is restricted in certain applications due to its low melting point. RESULTS: PBAT was treated using γ‐radiation. The radiation features were analyzed using Soxhlet extraction, and the ratio of chain scission and crosslinking and gelation dose were determined using the classical Charlesby–Pinner equation. The results showed that PBAT is a radiation‐crosslinkable polymer. The degree of crosslinking increased with increasing radiation dose; the relation between sol fraction and dose followed the Charlesby–Pinner equation. Differential scanning calorimetry analyses showed that the melting temperature (Tm) and the heat of fusion (ΔHm) of PBAT exhibited almost no change in the first scan. The second scan, however, showed a decrease in Tm and ΔHm. The glass transition temperature of irradiated PBAT increased with increasing radiation dose. The weight loss of control and irradiated PBAT resulting from thermal degradation was a one‐step process. Moreover, the tensile strength and elongation at break decreased with an increase in radiation dose. However, the Young's modulus and stress at yield were not greatly affected by γ‐radiation. CONCLUSION: PBAT can be crosslinked using γ‐radiation. The crosslinking efficiency is relatively low. The thermal and mechanical properties of PBAT are affected by γ‐radiation. Copyright © 2009 Society of Chemical Industry  相似文献   

9.
Differential scanning calorimetry (DSC), wide angle X‐ray diffraction (WAXD) and dynamic mechanical analysis (DMA) properties of poly(lactic acid)/ poly(butylene adipate‐co‐terephthalate) (PLA/PBAT) specimens suggest that only small amounts of poor PLA and/or PBAT crystals are present in their corresponding melt crystallized specimens. In fact, the percentage crystallinity, peak melting temperature and onset re‐crystallization temperature values of PLA/PBAT specimens reduce gradually as their PBAT contents increase. However, the glass transition temperatures of PLA molecules found by DSC and DMA analysis reduce to the minimum value as the PBAT contents of PLAxPBATy specimens reach 2.5 wt %. Further morphological and DMA analysis of PLA/PBAT specimens reveal that PBAT molecules are miscible with PLA molecules at PBAT contents equal to or less than 2.5 wt %, since no distinguished phase‐separated PBAT droplets and tan δ transitions were found on fracture surfaces and tan δ curves of PLA/PBAT specimens, respectively. In contrast to PLA, the PBAT specimen exhibits highly deformable properties. After blending proper amounts of PBAT in PLA, the inherent brittle deformation behavior of PLA was successfully improved. Possible reasons accounting for these interesting crystallization, compatible and tensile properties of PLA/PBAT specimens are proposed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
The crystallization kinetics of poly(butylene terephthalate) (PBT), poly(ethylene terephthalate) (PET), and their copolymers poly(1,4‐butylene‐co‐ethylene terephthalate) (PBET) containing 70/30, 65/35 and 60/40 molar ratios of 1,4‐butanediol/ethylene glycol were investigated using differential scanning calorimetry (DSC) at crystallization temperatures (Tc) which were 35–90 °C below equilibrium melting temperature . Although these copolymers contain both monomers in high proportion, DSC data revealed for copolymer crystallization behaviour. The reason for such copolymers being able to crystallize could be due to the similar chemical structures of 1,4‐butanediol and ethylene glycol. DSC results for isothermal crystallization revealed that random copolymers had a lower degree of crystallinity and lower crystallite growth rate than those of homopolymers. DSC heating scans, after completion of isothermal crystallization, showed triple melting endotherms for all these polyesters, similar to those of other polymers as reported in the literature. The crystallization isotherms followed the Avrami equation with an exponent n of 2–2.5 for PET and 2.5–3.0 for PBT and PBETs. Analyses of the Lauritzen–Hoffman equation for DSC isothermal crystallization data revealed that PBT and PET had higher growth rate constant Go, and nucleation constant Kg than those of PBET copolymers. © 2001 Society of Chemical Industry  相似文献   

11.
Graphene nanoplatelets (GNPs) were dispersed in poly(butylene adipate‐co‐terephthalate) (PBAT) by melt‐blending. Scanning electron micrographs showed good dispersion of GNPs in PBAT at low concentrations while at higher loadings, the platelets became physically in contact forming conductive pathways. Electrical conductivity of PBAT was enhanced markedly with GNP addition with a distinctly faster rate for GNP loadings higher than 6 wt % because of formation of conductive networks. Interestingly, thermal stability of PBAT was also found to increase for GNP loadings above 6 wt %. Dynamic viscoelastic properties of the nanocomposites exhibited significant enhancement with increasing GNPs. In particular, storage modulus showed less frequency dependency in the low frequency region leading to a percolation threshold of between 6 and 9 wt %, above which time–temperature superposition principle failed. Steady shear measurements revealed that GNP incorporation increased the zero‐shear viscosity markedly and intensified the shear thinning behavior. Carreau model well described the shear viscosity of all the compositions. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43620.  相似文献   

12.
PBS/PBAT共混型全生物降解材料的制备及其性能研究   总被引:1,自引:0,他引:1  
通过熔融共混法制备了聚丁二酸丁二醇酯(PBS)/聚己二酸对苯二甲酸丁二酯(PBAT)共混物,用熔体流动速率法、扫描量热法、X射线衍射、扫描电镜法及力学性能测试等手段研究了PBS/PBAT共混物的熔体流动性、结晶性能、力学性能以及共混物相容性。结果表明,随着PBAT含量的增加,PBS/PBAT共混体系的拉伸强度先升高后降低,断裂伸长率不断提高,冲击强度先降低后提高;当PBAT含量为20 %(质量分数,下同)时,与纯PBS相比,断裂伸长率提高10倍,冲击强度提高82 %,而拉伸强度仅仅降低6 %。  相似文献   

13.
Summary: To obtain a balance between toughness (as measured by notched impact strength) and elastic stiffness of poly(butylene terephthalate) (PBT), a small amount of tetra‐functional epoxy monomer was incorporated into PBT/[ethylene/methyl acrylate/glycidyl methacrylate terpolymer (E‐MA‐GMA)] blends during the reactive extrusion process. The effectiveness of toughening by E‐MA‐GMA and the effect of the epoxy monomer were investigated. It was found that E‐MA‐GMA was finely dispersed in PBT matrix, whose toughness was significantly enhanced, but the stiffness decreased linearly, with increasing E‐MA‐GMA content. Addition of 0.2 phr epoxy monomer was noted to further improve the dispersion of E‐MA‐GMA particles by increasing the viscosity of the PBT matrix. While use of epoxy monomer had little influence on the notched impact strength of the blends, there was a distinct increase in the elastic stiffness. SEM micrographs of impact‐fracture surfaces indicated that extensive matrix shear yielding was the main impact energy dissipation mechanism in both types of blends, with or without epoxy monomer, and containing 20 wt.‐% or more elastomer.

SEM micrographs of freeze‐fractured surfaces of PBT/E‐MA‐GMA blend illustrating the finer dispersion of E‐MA‐GMA in the presence of epoxy monomer.  相似文献   


14.
Poly[(l ‐lactide)‐co ‐(? ‐caprolactone)] (PLCL) and poly[(l ‐lactide)‐co ‐glycolide] (PLGA) copolymers are widely used in neural guide tissue regeneration. In this research, the surface modification of their hydrophilicity was achieved using plasma treatment. Attachment and proliferation of olfactory ensheathing cells on treated electrospun membranes increased by 26 and 32%, respectively, compared to the untreated PLCL and PLGA counterparts. Cells cultivated on both the PLCL and PLGA membranes showed high viability (>95%) and healthy morphologies with no evidence of cytotoxic effects. Cells grown on treated electrospun fibres displayed significant increases in mitochondrial activity and reductions in membrane leakage when compared to untreated samples. The results suggested that plasma treatment of the surface of the polymers enhanced both cell viability and growth without incurring any cytotoxic effects. © 2017 Society of Chemical Industry  相似文献   

15.
The melting behavior of poly(butylene terephthalate‐co‐diethylene terephthalate) and poly(butylene terephthalate‐co‐triethylene terephthalate) copolymers was investigated by differential scanning calorimetry after isothermal crystallization from the melt. Multiple endotherms were found for all the samples, and attributed to the melting and recrystallization processes. By applying the Hoffman‐Weeks' method, the equilibrium melting temperatures of the copolymers under investigation were obtained. Two distinct peaks in the crystallization exothermic curve were observed for all the samples. Both of them appeared at higher times than that of PBT, indicating that the introduction of a comonomer decreased the crystallization rate. The observed dependence of this latter on composition was explained on the basis of the content of ether–oxygen atoms in diethylene and triethylene terephthalate units, and of the different sizes of these units. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 3545–3551, 2001  相似文献   

16.
BACKGROUND: A series of novel biodegradable poly[(sebacic anhydride)‐co‐caprolactone] (PSA‐co‐PCL) triblock copolymers were prepared by melt condensation of acylated PSA and monofunctional hydroxyl‐terminated PCL prepolymers. These copolymers could be used as novel drug delivery carriers with expected good drug permeability due to the PCL component. The degradation rate and mode can be modulated by varying the ratio of monomers in the copolymer. RESULTS: The homopolymers and copolymers were characterized using 1H NMR, gel permeation chromatography and differential scanning calorimetry (DSC). 1H NMR confirmed the formation of triblock copolymers that comprise a middle PSA block and two side PCL blocks. DSC revealed that the melting temperature and degree of crystallinity for both sebacic anhydride (SA) and caprolactone (CL) components are strongly composition dependent, implying the hindrance effect of the two components on the crystallinity. In vitro degradation experiments showed that the mass loss is significantly accelerated for samples in base buffer solution and more rapid for the copolymers with a higher SA content. Scanning electron microscopy revealed that for SA‐rich copolymer, PSA(80 wt%)‐co‐PCL, surface erosion dominated the degradation mode of the sample. In contrast, for CL‐rich copolymer, PSA(20 wt%)‐co‐PCL, a micropore structure developed at a degradation time of 155 h along the edges of the sample, owing to the hydrolysis of SA. CONCLUSION: It is concluded that the rate and mode of degradation of these copolymers can be tuned by varying the composition of the copolymers. Copyright © 2007 Society of Chemical Industry  相似文献   

17.
Polyester‐polyether segmented block copolymers of poly[(butylene succinate)‐co‐poly(butylene terephthalate)] (PBS–PBT) and poly(tetramethylene glycol) (PTMG) (Mn = 2000) with various compositions were synthesized. PBT content in the PBS was adjusted to ca. 5 mol %. Their thermal and mechanical properties were investigated. In the case of copolymer, the melting point of the PBS–PBT control was 107.8°C, and the melting point of the copolymer containing 70 wt % of PTMG was 70.1°C. Crystallinity of soft segment was 5 ∼ 17%, and that of hard segment was 42 ∼ 59%. The breaking stress of the PBS–PTMG control was 47 MPa but it decreased with increasing PTMG content. In the case of copolymer containing 70 wt % of PTMG, breaking stress was 36 MPa. Contrary to the decreasing breaking stress, breaking strain increased from 300% for PBS–PBT control to 900% for a copolymer containing 70 wt % of PTMG. The shape recovery ratios of the copolymer containing 70 wt % PTMG were almost twice of those of copolymers containing 40 wt % PTMG. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 2067–2075, 2001  相似文献   

18.
We attempted to introduce crosslinking into poly(butylene adipate‐co‐succinate) (PBAS) to improve the properties, such as the mechanical strength and elasticity, by a simple addition of dicumyl peroxide (DCP). Prior to curing, the thermal stability of PBAS was investigated. Above 170°C PBAS was severely degraded, and the degradation could not be successfully stabilized by an antioxidant. The PBAS was effectively crosslinked by DCP, and the gel fraction increased as the DCP content increased. A major structure of the crosslinked PBAS was an ester and aliphatic group. The tensile strength and elongation of PBAS were improved with an increasing content of DCP, but there was little affect on the tear strength. The biodegradability of crosslinked PBAS was not seriously deteriorated. A higher degree of crosslinking gave a lower heat of crystallization and heat of fusion. However, the melt crystallization temperatures of the crosslinked PBAS were higher than that of PBAS. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 637–645, 2001  相似文献   

19.
1,3,5‐Benzenetrisamide‐based supramolecular nucleating agents for poly(butylene terephthalate) (PBT) are reported. 1,3,5‐Benzenetrisamides combine excellent thermal stability with chemical resistance, basic requirements for the use in high‐melting thermoplastics. To establish structure–property relationships, the central core and peripheral substituents are varied systematically. Dissolution and crystallization behavior of the additives in the PBT melt and the crystallization temperature of PBT are investigated as a function of the additive concentration. Efficient nucleating agents can increase the crystallization temperature of PBT by 10.6 °C to 199.1 °C. A visualization of supramolecular nano‐objects formed in the polymer melt is provided.

  相似文献   


20.
Blends of poly[(vinylidene fluoride)‐co‐hexafluoropropene] with dibutyl phthalate were examined by wide‐ and small‐angle X‐ray scattering, differential scanning calorimetry and dynamic mechanical spectroscopy, in order to study the influence of amount of plasticizer and the crystallization rate on the crystallinity and lamellar morphology of the copolymer. The dibutyl phthalate seems, at least for the cooling and heating rates used, simply to dilute the crystalline phase without affecting the amount of polymer that is able to crystallize. Furthermore, the small‐angle X‐ray scattering technique points out that the plasticizer mostly enters the amorphous phase either outside or inside the lamellar stacks. © 2001 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号