首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
C. Oguz  S. Cakir  I. Yilgor 《Polymer》2008,49(5):1414-1424
Computational studies were carried out to investigate the influence of polymerization procedure on the topology and various macromolecular characteristics of the highly branched polymers formed by the reaction of A2 and B3 type monomers through step-growth polymerization reactions. The influence of three different polymerization procedures on the properties of the polymers formed was investigated, namely, (i) slow addition of A2 over B3, (ii) slow addition of B3 over A2, and (iii) mixed A2 + B3. Topology, degree of branching, number and weight average molecular weights, and polydispersity index of the polymers were determined using Monte Carlo simulations, assuming different levels of cyclization ratios during the reactions. Interestingly model polymers obtained by the slow addition of B3 over A2 produced much higher degree of branching or truly hyperbranched polymers, when compared with the other two methods, which mainly resulted in linear growth with slight branching.  相似文献   

2.
Two tribromide compounds, 1,3‐(propanoic acid, 2‐bromo‐)‐2‐(2‐bromo‐1‐oxopropylamino)propyl ester (A 1 ) and trimethylolpropane tris(2‐bromopropionate) (A 2 ), were synthesized. By Cu/N,N,N′,N′,N″‐pentamethyldiethylenetriamine (PMDETA)‐mediated radical addition‐coupling polymerization (RACP) of 2‐methyl‐2‐nitrosopropane (MNP) with the tribromide compounds, two types of hyperbranched polymers were synthesized under mild conditions, respectively. Polymerization degrees of the polymers increased with time gradually, which is in line with a step‐growth polymerization mechanism. By tracing the polymerization process by gel permeation chromatography and NMR analysis, proper reaction conditions to get hyperbranched polymers was obtained. Based on the results of NMR analysis on the polymer chain structure, mechanism of forming hyperbranched polymer has been proposed, which includes formation of carbon radicals from the tribromo monomer through single electron transfer, their reaction with MNP to form nitroxide radicals, and cross‐coupling reaction of the nitroxide radicals with other carbon radicals. The gelation point of the A 2 ‐MNP system is larger than that of the A 1 ‐MNP system, indicating that probability of intramolecular cyclization in A 2 ‐MNP RACP system is higher than the A 1 ‐MNP system. The reactivity of —NHCOCH(CH3)Br group of A 1 is lower than its two —OCOCH(CH3)Br groups, and this resulted in longer distance between two adjacent branch points in the hyperbranched polymer of A 1 ‐MNP than the A 2 ‐MNP system. It is possible to adjust the chain structure of RACP‐based hyperbranched polymer by changing the reactivity of the functional groups in A3 monomer. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41972.  相似文献   

3.
Via A2 + B4 and A2 + B3 [where A2 is 1,4‐distyrylol‐2,5‐butoxybenzene, B3 is 1,1,1‐tris‐(p‐tosyloxymethyl)‐propane, and B4 is pentaerythritol tetra(methyl benzene sulfonate)] approaches, we synthesized two kinds of partially conjugated hyperbranched polymers, hyperbranched polymer with 3 arms (HP1) and hyperbranched polymer with 4 arms (HP2), which had rigid conjugated segments [oligo‐poly(phenylene vinylene)] and flexible, nonconjugated spacers arranged alternately through ether bonds in the skeleton. The conjugated segments were modified by pendant butoxy groups, which imparted the resulting polymers with excellent solubility in common organic solvents and excellent film‐forming abilities. Fourier transform infrared and nuclear magnetic resonance spectroscopy were used to identify the structure of the monomers and polymers. Thermal property investigations showed that two polymers both had good thermal stability with their decomposition temperatures in the range 396–405°C and high glass‐transition temperatures, which are of benefit to the fabrication of high‐performance light‐emitting devices. The photophysical properties were studied, and the relative photoluminescence quantum efficiencies of HP1 and HP2 in dilute chloroform solution amounted to 56.8 and 49.3%, respectively. A brief light‐emitting diode device with a configuration of indium tin oxide/HP1/Ca/Al was fabricated, and its electroluminescence performance was studied. The brightness of the device reached an optimistic maximum of 190 cd/m2 at 8.2 V. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
This work theoretically deals with the kinetics of the hyperbranched polymerization with A2, AB and B3 monomers. The analytical expressions of the size distribution function and the various molecular parameters of the resulting hyperbranched polymers were derived. The structure and molecular parameters of the products depend on the monomer feed ratios and the conversion of groups. Gelation is easy to occur if the monomer feed ratio of A2 to B3 (λ) is in the range of 3/4 ≤ λ ≤ 3. The addition of AB monomer can increase the conversion of A or B groups and enhance the number-average degree of polymerization at the critical gelation point. On the other hand, excessive AB monomer will results in a small degree of branching for the products. A small λ and a suitable β value favor to form the hyperbranched polymers with certain degree of branching.  相似文献   

5.
A kinetic model was proposed to describe hyperbranched polymers (HBPs) formed by the polymerization of monomers A2 and B3 with monofunctional compound (BR) added gradually in a semibatch reactor. The dependences of the degree of polymerization (DP) and the degree of branching on the reaction time and the monomer compositions were calculated. The DP of the HBPs could be increased by the slow addition of BR in the reactor. If the monomers B3 and A2 were mixed at a molar ratio of B3:A2 = 1:3, and the BR was fed slowly into the reactor, the HBPs with weight average DP were approximately 3200 and 16 700 at conversion of 0.95 and 0.99, respectively, which were higher than those prepared by the batch system. This theory was further verified by an experimental demonstration. Hyperbranched polyurethane acrylate can be synthesized with a higher DP in a semibatch system than in a batch reactor.  相似文献   

6.
In this thesis, two novel porous hyperbranched poly(1,3,5‐tris(4‐carboxyphenyl) benzene p ‐phenylenediamine) amides with different terminal functional groups are synthesized through an A2 + B3 approach using 1,3,5‐tri(4‐carboxyl phenyl) benzene (H3BTB) and p ‐phenylenediamine as raw material, N ‐methyl‐pyrrolidone as solvent, triphenyl phosphite and pyridine as dehydrating agent, by means of regulating the mole ratio of the monomers. The chemical structures of the prepared hyperbranched polymers are characterized by Fourier transform infrared spectroscopy and nuclear magnetic resonance (1H‐NMR and 13C‐NMR) analysis. These two polymers can be soluble in dimethyl sulfoxide (DMSO) and N ,N ‐dimethyl formamide (DMF). Their DMSO solutions exhibit strong blue fluorescence, especially for the amino terminated polymer HP‐NH2. While in DMF solution, the two polymers emit strong green fluorescence. These two polymers are porous polymers with the Brunauer?Emmett?Teller surface areas of 4.53 and 24.52 m2/g for HP‐COOH and HP‐NH2, respectively. They are potential useful in the areas of storage, separation, catalysis, and light emitting. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44505.  相似文献   

7.
S. Unal  E. Yilgor  T.E. Long 《Polymer》2005,46(13):4533-4543
Structure development in highly branched segmented polyurethaneureas based on oligomeric A2+B3 approach was investigated by experimental studies and kinetic Monte-Carlo simulations. In both simulations and experiments, hyperbranched polymers were produced by the slow addition of A2 onto B3. Experimental studies showed strong influence of solution concentration on the gel point and the extent of cyclization in the polymers formed. In polymerizations conducted at a solution concentration of 25% by weight gelation took place at the stoichiometric ratio [A2]/[B3]=0.886. This is somewhat higher than the theoretical ratio of 0.75. In very dilute solutions, such as 5% solids by weight, no gelation was observed although the stoichiometric amount of A2 added well exceeded the theoretical amount for gelation. Both experimental studies by size exclusion chromatography (SEC) and kinetic Monte-Carlo simulations demonstrated a gradual increase in polymer molecular weights as more A2 is added onto B3. This was followed by a sharp increase in the polymer molecular weight as the gel point is approached. A very similar behavior was observed for the polydispersity values of the polymers formed. Kinetic Monte-Carlo simulations performed at different cyclization ratios showed very good agreement with experimental results.  相似文献   

8.
A CF3‐containing diamine, 4,4′‐bis(4‐amino‐2‐trifluoromethylphenoxy)benzophenone ( 2 ), was synthesized from 4,4′‐dihydroxybenzophenone and 2‐chloro‐5‐nitrobenzotrifluoride. Imide‐containing diacids ( 3 and 5Ba – 5Bg ) were prepared by the condensation reaction of aromatic diamines and trimellitic anhydride. Then, two series of novel soluble aromatic poly(amide imide)s (PAIs; 6Aa – 6Ak and 6Ba – 6Bg ) were synthesized from a diamine ( 4Aa – 4Ak or 2 ) with the imide‐containing diacids ( 3 and 5Ba – 5Bg ) via direct polycondensation with triphenyl phosphate and pyridine. The aromatic PAIs had inherent viscosities of 0.74–1.76 dL/g. All of the synthesized polymers showed excellent solubility in amide‐type solvents, such as N‐methyl‐2‐pyrrolidone and N,N‐dimethylacetamide (DMAc), and afforded transparent and tough films by DMAc solvent casting. These polymer films had tensile strengths of 90–113 MPa, elongations at break of 8–15%, and initial moduli of 2.0–2.9 GPa. The glass‐transition temperatures of the aromatic PAIs were in the range 242–279°C. They had 10% weight losses at temperatures above 500°C and showed excellent thermal stabilities. The 6B series exhibited less coloring and showed lower yellowness index values than the corresponding 6A series. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:3641–3653, 2006  相似文献   

9.
A light‐emitting partially conjugated hyperbranched polymer (2,5‐dimethoxy‐substituted hyperbranched poly(p‐phenylene vinylene), MOHPV) based on rigid fluorescent conjugated segments, 2,5‐dimethoxy‐substituted distyrylbenzene (a derivative of oligo‐poly(p‐phenylene vinylene)), and flexible non‐conjugated spacers, trioxymethylpropane, was synthesized via an A2 + B3 approach. The weight‐average molecular weight was 2.48 × 104 g mol?1. The introduction of two methoxy groups into central rings of the oligo‐poly(p‐phenylene vinylene) imparted to MOHPV better solubility in common organic solvents and processability than its analogues reported in our previous work, especially the fully conjugated hyperbranched polymers. The effect of the molar ratio of monomer A2 to monomer B3 on the molecular weight and molecular weight distribution was investigated. A single‐layer light‐emitting diode was fabricated employing MOHPV as an emitter. A double‐layer light‐emitting diode was also fabricated by doping an electron transport material, 2‐(4‐biphenylyl)‐5‐phenyl‐1,3,4‐oxadiazole, into the emitting layer and inserting a thin layer of tri(8‐hydroxyquinoline)aluminium as electron‐transporting/hole‐blocking layer. A maximum luminance of 1500 cd m?2 at 12 V and a maximum electroluminescence efficiency of 1.38 cd A?1 at 14 mA cm?3, which are approximately 43.5 and 12.9 times greater, respectively, than those of the single‐layer device, were achieved. The synthetic simplicity, excellent solubility and solution processability, and less of a propensity to aggregation make MOHPV a novel type of emitter for polymer light‐emitting displays. Copyright © 2010 Society of Chemical Industry  相似文献   

10.
Summary: The reaction of 2,4‐TDI and DEA, as an A2 + B*B2 polymerization system towards hyperbranched HPUs was followed using in situ ATR‐FT‐IR spectroscopy. The decrease in intensity of the NCO absorption band of the reactive isocyanate group of 2,4‐TDI along with the formation and growth of the new characteristic bands of urethane and urea groups were detected. The reactivity difference of both NH and OH groups towards the NCO group at low temperatures was proven. The rate of the reaction was found to be affected by changing the temperature, the rate of addition of the B*B2 monomer and the type of solvent. Moreover, the increase of the carbonyl vibration and the amide II bands of urea was very obvious during the addition of the stopper DEA. Thus, it was possible to verify the individual reaction steps of this complex polyreaction and to correlate these with the structural development of the resulting macromolecules.

Characteristic vibration bands of urethane and urea groups in the IR spectra (1 780–1 480 cm?1) during the polymerization reaction.  相似文献   


11.
Hyperbranched poly(silyl ester)s were synthesized via the A2 + B4 route by the polycondensation reaction. The solid poly(silyl ester) was obtained by the reaction of di‐tert‐butyl adipate and 1,3‐tetramethyl‐1,3‐bis‐β(methyl‐dicholorosilyl)ethyl disiloxane. The oligomers with tert‐butyl terminal groups were obtained via the A2 + B2 route by the reaction of 1,5‐dichloro‐1,1,5,5‐tetramethyl‐3,3‐diphenyl‐trisi1oxane with excess amount of di‐tert‐butyl adipate. The viscous fluid and soft solid poly(silyl ester)s were obtained by the reaction of the oligomers as big monomers with 1,3‐tetramethyl‐1,3‐bis‐β(methyl‐dicholorosilyl)ethyl disiloxane. The polymers were characterized by 1H NMR, IR, and UV spectroscopies, differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The 1H NMR and IR analysis proved the existence of the branched structures in the polymers. The glass transition temperatures (Tg's) of the viscous fluid and soft solid polymers were below room temperature. The Tg of the solid poly(silyl ester) was not found below room temperature but a temperature for the transition in the liquid crystalline phase was found at 42°C. Thermal decomposition of the soft solid and solid poly(silyl ester)s started at about 130°C and for the others it started at about 200°C. The obtained hyperbranched polymers did not decompose completely at 700°C. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3430–3436, 2006  相似文献   

12.
Hyperbranched poly(aryl ether ketone)s with hydroxyl end groups (HBP‐OH) and high degree of branching value (83%) were synthesized via an A2 + B3 approach. The polymerization conditions (e.g., polymerization temperature and time, monomer concentration, stoichiometric ratio of functional groups) were explored to avoid the gelation. Allyl‐terminated hyperbranched PAEKs (HBP‐AL) with low molecular weight (Mn = 3.4 × 103) and narrow polydispersity (PDI = 1.65) were obtained via the etherification of HBP‐OH and it has been used for the modification of bismaleimide (BMI) resins. The prepolymers showed good processibilities with a viscosity below 0.6 Pa s at 110°C, though the viscosities slightly increased as the increase of HBP‐AL contents. The cured BMI resins showed high glass transition temperatures (Tg > 320°C) and good thermal stabilities (Td > 400°C, both in nitrogen and air). It is inspiring to note that the incorporation of HBP‐AL into BMI matrix results in a significant enhancement of toughness without any noticeable loss in modulus, processibility, and Tg. POLYM. ENG. SCI., 54:1675–1685, 2014. © 2013 Society of Plastics Engineers  相似文献   

13.
Zhiping Zhou  Zhengwei Jia  Deyue Yan 《Polymer》2009,50(23):5608-5612
Taking account of the difference of reactivities between C and B group, the evolution of the monomers and the various structural units formed from the polyaddition of A2 and CB2 monomers was investigated by the kinetic mechanism. The calculated results theoretically explain the experimental data observed in our previous works very well, if the reactivity ratio of C to B groups is 200. The critical conversion of gelation for the A2 + CB2 type polymerization depends on the reactivity ratio. The lower the ratio, the earlier the gelation appears. Compared with the A2 + B3 type polymerization, the disappearance of gelation for the A2 + CB2 type polymerization should attribute to the much higher reactivity of C group than that of B one. The analytical expression of the degree of branching was derived as well. If the reactivity of C group is much higher than that of B group and the substitution effect is neglected, the value of the degree of branching for the hyperbranched polymers obtained is equal to the value of conversion of B groups and it may exceed 0.5, with the feed ratio of monomers varying from 1 to 3/2.  相似文献   

14.
The combination of radical‐promoted cationic polymerization, atom transfer radical polymerization (ATRP) and click chemistry was employed for the efficient preparation of poly(cyclohexene oxide)‐block‐polystyrene (PCHO‐b‐PSt). Alkyne end‐functionalized poly(cyclohexene oxide) (PCHO‐alkyne) was prepared by radical‐promoted cationic polymerization of cyclohexene oxide monomer in the presence of 1,2‐diphenyl‐2‐(2‐propynyloxy)‐1‐ethanone (B‐alkyne) and an onium salt, namely 1‐ethoxy‐2‐methylpyridinium hexafluorophosphate, as the initiating system. The B‐alkyne compound was synthesized using benzoin photoinitiator and propargyl bromide. Well‐defined bromine‐terminated polystyrene (PSt‐Br) was prepared by ATRP using 2‐oxo‐1,2‐diphenylethyl‐2‐bromopropanoate as initiator. Subsequently, the bromine chain end of PSt‐Br was converted to an azide group to obtain PSt‐N3 by a simple nucleophilic substitution reaction. Then the coupling reaction between the azide end group in PSt‐N3 and PCHO‐alkyne was performed with Cu(I) catalysis in order to obtain the PCHO‐b‐PSt block copolymer. The structures of all polymers were determined. Copyright © 2010 Society of Chemical Industry  相似文献   

15.
s‐Triazine‐based hyperbranched polyurethanes (HBPUs) with different hard segments were synthesized by A2 + B3 approach. Various kinds of multiwalled carbon nanotube (MWNT) nanocomposites with HBPU were prepared to investigate an impact of hyperbranched polymer on dispersion of MWNTs in the polymer matrix and the resulting properties of nanocomposites. Synthesized HBPUs were characterized using FTIR and NMR measurements. The highly branched structures were found very effective in enhancing the pristine MWNT dispersion in the polymer matrix. As a result, the MWNT‐reinforced HBPU nanocomposites showed a steep increase in the yield stress and modulus and enhanced shape memory effect with an increase of hard segment and MWNT loading. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
Shape memory composites of hyperbranched polyurethane (HBPU) and acid‐treated multi‐walled carbon nanotubes (MWNTs) were prepared using an in situ polymerization method. HBPUs with different hard segments contents were synthesized via the A2 + B3 approach using poly(ethylene glycol) (PEG) as a soft segment, 4,4′‐methylene bis(phenylisocynate), castor oil, and 1,4‐butanediol as hard segment. Compared to HBPU, the HBPU/MWNT composites showed faster shape recovery and double the shape recovery stress in the thermomechanical shape memory test, which was dependent on the MWNTs content and HBPU hard segment content. The water‐responsive shape memory effect of HBPU/MWNT composites was considered to result from the combined contribution of hydrophilic PEG and well dispersed MWNTs in highly branched HBPU molecules. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
In this article, two novel benzobisthiazole‐containing hyperbranched polyamides with different end groups were synthesized, by adjusting the feed molar ratio of the reaction monomers, using 1,3,5‐benzenetricarboxylic acid and 2,6‐diaminobenzo[1,2‐d:4,5‐d']bisthiazole as monomers, polyphosphoric acid as solvent, and catalyst. The molecular structure of the synthesized hyperbranched polymers were speculated by 1H‐nuclear magnetic resonance (NMR) analysis, 13C‐NMR analysis, and Fourier transform infrared analysis. The Mn, Mw, and DB of the carboxyl terminated polymer HB‐COOH are 3264 g/mol, 3350 g/mol, and 44.1%, respectively, with a polydispersity of 1.03. The Mn, Mw, and DB of amino terminated polymer HB‐NH2 are 3340 g/mol, 3420 g/mol, and 41.7%, respectively, with a polydispersity of 1.02. The thermal stability of HB‐NH2 was higher than HB‐COOH in the range of 30 °C–800 °C.These two benzobisthiazole‐containing hyperbranched polyamides were completely amorphous and soluble in DMSO. Their DMSO solutions exhibited strong blue fluorescence. The fluorescent intensity of HB‐NH2 was higher than HB‐COOH. The prepared polymers were potential useful in the area of blue light emitting and display. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43453.  相似文献   

18.
Silica nanoparticles bearing hyperbranched polyglycidol (hbP) grafts are synthesized and blended with poly(ethylene oxide) (PEO) for the fabrication of composite solid polymer electrolytes (SPEs) for enhancing Li-ion conductivity. Different batches of hbPs are prepared, namely, the 5th, 6th, and 7th with increasing molecular weights using cationic ring-opening polymerization and grafted the hbPs onto the silica nanoparticles using quaternization reaction. The effect of end functionalization of hbP-grafted silica nanoparticles with a nitrile functional group (CN–hbP–SiO2) on the ionic conductivity of the blends with PEO is further studied. High dipole moments indicate polar nature of nitriles and show high dielectric constants. Among all the hbPs, the 6th-batch CN–hbP–SiO2 nanoparticles exhibit better ionic conductivity on blending with PEO showing ionic conductivity of 2.3 × 10−3 S cm−1 at 80 °C. The blends show electrochemical stability up to 4.5 V versus lithium metal.  相似文献   

19.
This review presents firstly the synthesis of various dendritic hyperbranched polymers with well‐defined structures by generation‐based growth methodologies using living/controlled polymerization. Secondly, the synthesis of dendritic hyperbranched poly(methyl methacrylate)s (PMMAs) and their functionalized block copolymers using a novel iterative methodology is described. The methodology involves a two‐reaction sequence in each iterative process: (a) a linking reaction of α‐functionalized living anionic PMMA with tert‐butyldimethylsilyloxymethylphenyl (SMP) groups with benzyl bromide (BnBr)‐chain‐end‐functionalized polymer and (b) a transformation reaction of the SMP groups into BnBr functions. This reaction sequence is repeated several times to construct high‐generation (maximum seventh generation) dendritic hyperbranched polymers. Similar branched architectural block copolymers have also been synthesized by the same iterative methodology using other α‐functionalized living anionic polymers. Surface structures of the resulting dendritic hyperbranched block copolymers composed of PMMA and poly(2‐(perfluorobutyl)ethyl methacrylate) segments have been characterized using X‐ray photoelectron spectroscopy and contact angle measurements. Solution behaviors of dendritic hyperbranched PMMAs with different generations and branch densities are discussed based on their intrinsic viscosities, g′ values and Rh values. Copyright © 2007 Society of Chemical Industry  相似文献   

20.
Polyamidoamine hyperbranched polymer (Hyp)/clay nanocomposites were synthesized by using both of montmorillonite and laponite clays. Poly amidoamine hyperbranched polymer (Hyp) was prepared by one‐pot polymerization via couple monomer methodology. Afterward, the amino ends of Hyp were modified with methyl methacrylate (MMA), styrene (St) and butyl methacrylate (n‐BuMA) polymers which were previously prepared via ATRP (atom transfer radical polymerization) to form the corresponding new hyperbranched polymers Hyp1, Hyp2 and Hyp3. Those formed polymers were inserted into the modified clay, such as montmorillonite and laponite to form their nanocomposites. The formed polymer/clay nanocomposites were characterized via XRD, TEM, and thermal analyses. The formed hyperbranched polymers generally showed intercalation behavior more than the exfoliation one mostly because of the bulkiness of the hyperbranched skeleton. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号