首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The solutions of the displacement boundary integral equation (BIE) are not uniquely determined in certain types of boundary conditions. Traction boundary integral equations that have unique solutions in these traction and mixed boundary cases are established. For two‐dimensional linear elasticity problems, the divergence‐free property of the traction boundary integral equation is established. By applying Stokes' theorem, unknown tractions or displacements can be reduced to computation of traction integral potential functions at the boundary points. The same is true of the J integral: it is divergence‐free and the evaluation of the J integral can be inverted into the computation of the J integral potential functions at the boundary points of the cracked body. The J integral can be expressed as the linear combination of the tractions and displacements from the traction BIE on the boundary of the cracked body. Numerical integrals are not needed at all. Selected examples are presented to demonstrate the validity of the traction boundary integral and J integral. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, we present a direct meshless method of boundary integral equation (BIE), known as the boundary element‐free method (BEFM), for two‐dimensional (2D) elastodynamic problems that combines the BIE method for 2D elastodynamics in the Laplace‐transformed domain and the improved moving least‐squares (IMLS) approximation. The formulae for the BEFM for 2D elastodynamic problems are given, and the numerical procedures are also shown. The BEFM is a direct numerical method, in which the basic unknown quantities are the real solutions of the nodal variables, and the boundary conditions can be implemented directly and easily that leads to a greater computational precision. For the purpose of demonstration, some selected numerical examples are solved using the BEFM. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
In this study, we first discuss the moving least‐square approximation (MLS) method. In some cases, the MLS may form an ill‐conditioned system of equations so that the solution cannot be correctly obtained. Hence, in this paper, we propose an improved moving least‐square approximation (IMLS) method. In the IMLS method, the orthogonal function system with a weight function is used as the basis function. The IMLS has higher computational efficiency and precision than the MLS, and will not lead to an ill‐conditioned system of equations. Combining the boundary integral equation (BIE) method and the IMLS approximation method, a direct meshless BIE method, the boundary element‐free method (BEFM), for two‐dimensional elasticity is presented. Compared to other meshless BIE methods, BEFM is a direct numerical method in which the basic unknown quantity is the real solution of the nodal variables, and the boundary conditions can be applied easily; hence, it has higher computational precision. For demonstration purpose, selected numerical examples are given. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, a semi-analytical approach for the eigenproblem of circular plates with multiple circular holes is presented. Natural frequencies and modes are determined by employing the null-field integral formulation in conjunction with degenerate kernels, tensor rotation and Fourier series. In the proposed approach, all kernel functions are expanded into degenerate (separable) forms and all boundary densities are represented by using Fourier series. By uniformly collocating points on the real boundary and taking finite terms of Fourier series, a linear algebraic system can be constructed. The direct searching approach is adopted to determine the natural frequency through the singular value decomposition (SVD). After determining the unknown Fourier coefficients, the corresponding mode shape is obtained by using the boundary integral equations for domain points. The result of the annular plate, as a special case, is compared with the analytical solution to verify the validity of the present method. For the cases of circular plates with an eccentric hole or multiple circular holes, eigensolutions obtained by the present method are compared well with those of the existing approximate analytical method or finite element method (ABAQUS). Besides, the effect of eccentricity of the hole on the natural frequency and mode is also considered. Moreover, the inherent problem of spurious eigenvalue using the integral formulation is investigated and the SVD updating technique is adopted to suppress the occurrence of spurious eigenvalues. Excellent accuracy, fast rate of convergence and high computational efficiency are the main features of the present method thanks to the semi-analytical procedure.  相似文献   

5.
This paper examines the interaction between coplanar square cracks by combining the moving least‐squares (MLS) approximation and the derived boundary integral equation (BIE). A new traction BIE involving only the Cauchy singular kernels is derived by applying integration by parts to the traditional boundary integral formulation. The new traction BIE can be directly applied to a crack surface and no displacement BIE is necessary because all crack boundary conditions (both upper and lower ones) are incorporated. A boundary element‐free method is then developed by combining the derived BIE and MLS approximation, in which the crack opening displacement is first expressed as the product of weight functions and the characteristic terms, and the unknown weight is approximated with the MLS approximation. The efficiency of the developed method is tested for isotropic and transversely isotropic media. The interaction between two and three coplanar square cracks in isotropic elastic body is numerically studied and the case of any number of coplanar square cracks is deduced and discussed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
This work contains an analytical study of the asymptotic near‐crack contour behaviour of stresses obtained from the self‐regular traction‐boundary integral equation (BIE), both in two and in three dimensions, and for various crack displacement modes. The flat crack case is chosen for detailed analysis of the singular stress for points approaching the crack contour. By imposing a condition of bounded stresses on the crack surface, the work shows that the boundary stresses on the crack are in fact zero for an unloaded crack, and the interior stresses reproduce the known inverse square root behaviour when the distance from the interior point to the crack contour approaches zero. The correct order of the stress singularity is obtained after the integrals for the self‐regular traction‐BIE formulation are evaluated analytically for the assumed displacement discontinuity model. Based on the analytic results, a new near‐crack contour self‐regular traction‐BIE is proposed for collocation points near the crack contour. In this new formulation, the asymptotic log‐singular stresses are identified and extracted from the BIE. Log‐singular stress terms are revealed for the free integrals written as contour integrals and for the self‐regularized integral with the integration region divided into sub‐regions. These terms are shown to cancel each other exactly when combined and can therefore be eliminated from the final BIE formulation. This work separates mathematical and physical singularities in a unique manner. Mathematical singularities are identified, and the singular information is all contained in the region near the crack contour. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
In this article, a systematic approach is proposed to calculate the torsional rigidity and stress of a circular bar containing multiple circular inclusions. To fully capture the circular geometries, the kernel function is expanded to the degenerate form and the boundary density is expressed into Fourier series. The approach is seen as a semi-analytical manner since error purely attributes to the truncation of Fourier series. By collocating the null-field point exactly on the real boundary and matching the boundary condition, a linear algebraic system is obtained. Convergence study shows that only a few number of Fourier series terms can yield acceptable results. Finally, torsion problems are revisited to check the validity of our method. Not only the torsional rigidities but also the stresses of multiple inclusions are also obtained by using the present approach.  相似文献   

8.
This paper concerns the direct numerical evaluation of singular integrals arising in Boundary Integral Equations for displacement (BIE) and displacement gradients (BIDE), and the formulation of a Traction Boundary Integral Equation (TBIE) for solving general elastostatic crack problems. Subject to certain continuity conditions concerning displacements and tractions at the source point, singular integrals in the BIE and the BIDE corresponding to coefficients of displacement and displacement gradients at the source point are shown to be of a form that allows application of Stokes' theorem. All the singular integrals in 3-D BIE and BIDE are reduced to non-singular line integrals, and those in 2-D BIE and BIDE are evaluated in closed form. Remaining terms involve regular integrals, and no references to Cauchy or Hadamard principal values are required. Continuous isoparametric interpolations used on continuous elements local to the source point are modified to include unique displacement gradients at the source point which are compatible with all local tractions. The resulting numerical BIDE is valid for source points located arbitrarily on the boundary, including corners, and a procedure is given for constructing a TBIE from the BIDE. Some example solutions obtained using the present numerical method for the TBIE in 2-D and 3-D are presented. © British Crown Copyright 1997/DERA.  相似文献   

9.
This paper considers a 2‐D fracture analysis of anisotropic piezoelectric solids by a boundary element‐free method. A traction boundary integral equation (BIE) that only involves the singular terms of order 1/r is first derived using integration by parts. New variables, namely, the tangential derivative of the extended displacement (the extended displacement density) for the general boundary and the tangential derivative of the extended crack opening displacement (the extended displacement dislocation density), are introduced to the equation so that solution to curved crack problems is possible. This resulted equation can be directly applied to general boundary and crack surface, and no separate treatments are necessary for the upper and lower surfaces of the crack. The extended displacement dislocation densities on the crack surface are expressed as the product of the characteristic terms and unknown weight functions, and the unknown weight functions are modelled using the moving least‐squares (MLS) approximation. The numerical scheme of the boundary element‐free method is established, and an effective numerical procedure is adopted to evaluate the singular integrals. The extended ‘stress intensity factors’ (SIFs) are computed for some selected example problems that contain straight or curved cracks, and good numerical results are obtained. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
Combining the boundary integral equation (BIE) method and improved moving least-squares (IMLS) approximation, a direct meshless BIE method, which is called the boundary element-free method (BEFM), for two-dimensional potential problems is discussed in this paper. In the IMLS approximation, the weighted orthogonal functions are used as the basis functions; then the algebra equation system is not ill-conditioned and can be solved without obtaining the inverse matrix. Based on the IMLS approximation and the BIE for two-dimensional potential problems, the formulae of the BEFM are given. The BEFM is a direct numerical method in which the basic unknown quantity is the real solution of the nodal variables, and the boundary conditions can be applied directly and easily; thus, it gives a greater computational precision. Some numerical examples are presented to demonstrate the method.  相似文献   

11.
The boundary integral equation (BIE) method is applied for the thermal analysis of fiber-reinforced composites, particularly the carbon-nanotube (CNT) composites, based on a rigid-line inclusion model. The steady state heat conduction equation is solved using the BIE in a two-dimensional infinite domain containing line inclusions which are assumed to have a much higher thermal conductivity (like CNTs) than that of the host medium. Thus the temperature along the length of a line inclusion can be assumed constant. In this way, each inclusion can be regarded as a rigid line (the opposite of a crack) in the medium. It is shown that, like the crack case, the hypersingular (derivative) BIE can be applied to model these rigid lines. The boundary element method (BEM), accelerated with the fast multipole method, is used to solve the established hypersingular BIE. Numerical examples with up to 10,000 rigid lines (with 1,000,000 equations), are successfully solved by the BEM code on a laptop computer. Effective thermal conductivity of fiber-reinforced composites are evaluated using the computed temperature and heat flux fields. These numerical results are compared with the analytical solution for a single inclusion case and with the experimental one reported in the literature for carbon-nanotube composites for multiple inclusion cases. Good agreements are observed in both situations, which clearly demonstrates the potential of the developed approach in large-scale modeling of fiber-reinforced composites, particularly that of the emerging carbon-nanotube composites.  相似文献   

12.
Following the success of using the null-field integral approach to determine the torsional rigidity of a circular bar with circular inhomogeneities (Chen and Lee in Comput Mech 44(2):221–232, 2009), an extension work to an elliptic bar containing elliptic inhomogeneities is done in this paper. For fully utilizing the elliptic geometry, the fundamental solutions are expanded into the degenerate form by using the elliptic coordinates. The boundary densities are also expanded by using the Fourier series. It is found that a Jacobian term may exist in the degenerate kernel, boundary density or boundary contour integral and cancel out to each other. Null-field points can be exactly collocated on the real boundary free of facing the principal values using the bump contour approach. After matching the boundary condition, a linear algebraic system is constructed to determine the unknown coefficients. An example of an elliptic bar with two inhomogeneities under the torsion is given to demonstrate the validity of the present approach after comparing with available results.  相似文献   

13.
A design optimization procedure is developed using the boundary integral equation (BIE) method for linear elastostatic two-dimensional domains. Optimal shape design problems are treated where design variables are geometric parameters such as the positions and sizing dimensions of entire features on a component or structure. A fully analytical approach is adopted for the design sensitivity analysis where the BIE is implicitly differentiated. The ability to evaluate response sensitivity derivatives with respect to design variables such as feature positions is achieved through the definition of appropriate design velocity fields for these variables. How the advantages of the BIE method are amplified when extended to sensitivity analysis for this category of shape design problems is also highlighted. A mathematical programming approach with the penalty function method is used for solving the overall optimization problem. The procedure is applied to three example problems to demonstrate the optimum positioning of holes and optimization of radial dimensions of circular arcs on structures.  相似文献   

14.
A simple a-posteriori error estimation for adaptive BEM in elasticity   总被引:2,自引:0,他引:2  
In this paper, the properties of various boundary integral operators are investigated for error estimation in adaptive BEM. It is found that the residual of the hyper-singular boundary integral equation (BIE) can be used for a-posteriori error estimation for different kinds of problems. Based on this result, a new a-posteriori error indicator is proposed which is a measure of the difference of two solutions for boundary stresses in elastic BEM. The first solution is obtained by the conventional boundary stress calculation method, and the second one by use of the regularized hyper-singular BIE for displacement derivative. The latter solution has recently been found to be of high accuracy and can be easily obtained under the most commonly used C 0 continuous elements. This new error indicator is defined by a L 1 norm of the difference between the two solutions under Mises stress sense. Two typical numerical examples have been performed for two-dimensional (2D) elasticity problems and the results show that the proposed error indicator successfully tracks the real numerical errors and effectively leads a h-type mesh refinement procedure.  相似文献   

15.
This paper presents the non‐singular forms, in a global sense, of two‐dimensional Green's boundary formula and its normal derivative. The main advantage of the modified formulations is that they are amenable to solution by directly applying standard quadrature formulas over the entire integration domain; that is, the proposed element‐free method requires only nodal data. The approach includes expressing the unknown function as a truncated Fourier–Legendre series, together with transforming the integration interval [a, b] to [‐1,1] ; the series coefficients are thus to be determined. The hypersingular integral, interpreted in the Hadamard finite‐part sense, and some weakly singular integrals can be evaluated analytically; the remaining integrals are regular with the limiting values of the integrands defined explicitly when a source point coincides with a field point. The effectiveness of the modified formulations is examined by an elliptic cylinder subject to prescribed boundary conditions. The regularization is further applied to acoustic scattering problems. The well‐known Burton–Miller method, using a linear combination of the surface Helmholtz integral equation and its normal derivative, is adopted to overcome the non‐uniqueness problem. A general non‐singular form of the composite equation is derived. Comparisons with analytical solutions for acoustically soft and hard circular cylinders are made. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
This study combines the boundary integral equation (BIE) method and improved moving least-squares (IMLS) approximation to present a direct meshless boundary integral equation method, the boundary element-free method (BEFM) for three-dimensional elasticity. Based on the improved moving least-squares approximation and the boundary integral equation for three-dimensional elasticity, the formulae of the boundary element-free method are given, and the numerical procedure is also shown. Unlike other meshless boundary integral equation methods, the BEFM is a direct numerical method in which the basic unknown quantity is the real solution of the nodal variables, and the boundary conditions can be applied directly and easily, thus giving it a greater computational precision. Three selected numerical examples are presented to demonstrate the method.Aknowledgement The work in this project was fully supported by a grant from the Research Grants Council (RGC) of the Hong Kong Special Administrative Region, China (Project No. CityU 1011/02E).The work that is described in this paper was supported by Project No. CityU 1011/02E, which was awarded by the Research Grants Council of the Hong Kong Special Administrative Region, China. The authors are grateful for the financial support.  相似文献   

17.
求解三维物体波浪荷载的边界元模型   总被引:1,自引:0,他引:1  
建立了求解规则波中任意形状三维物体绕射问题的边界元模型。设置辐射面将流场分为内、外场,外场中的绕射势用特征函数展开式解析表达,内场则由边界积分方程求解,所取的Green 函数为简单的1/r 形式。内场边界采用四边形面元和轴对称面元混合布置的划分方式,轴对称面元上奇点强度沿周向为Fourier 级数展开的高次分布,提高了求解三维绕射问题的精度和效率。经与直立圆柱绕射的线性理论解比较,验证了数值方法的可靠性。利用谱分析原理,将规则波中的结果拓展,得到多向不规则波中绕射物体所受波浪力的统计特性。  相似文献   

18.
The purpose of this paper is to present an analytical formulation to describe the free vibration of a circular flexural plate with multiple circular holes by using the null field integral formulation, the addition theorem and complex Fourier series. Owing to the addition theorem, all kernel functions are represented in the degenerate form and further transformed into the same polar coordinates centered at one of circles, where the boundary conditions are specified. Thus, not only the computation of the principal value for integrals is avoided but also the calculation of higher-order derivatives in the flexural plate problem can be easily determined. By matching the specified boundary conditions, a coupled infinite system of simultaneous linear algebraic equations is derived as an analytical model for the title problem. According to the direct searching approach, natural frequencies are numerically determined through the singular value decomposition (SVD) in the truncated finite system. After determining the unknown Fourier coefficients, the corresponding mode shapes are obtained by using the direct boundary integral formulations for the domain points. Several numerical results are presented. In addition, the inherent problem of spurious eigenvalue using the integral formulation is investigated and the SVD updating technique is adopted to suppress the occurrence of spurious eigenvalues. Excellent accuracy, fast rate of convergence and high computational efficiency are advantages of the present method thanks to its analytical features.  相似文献   

19.
In this paper, a novel boundary-type meshless method, the boundary point method (BPM), is developed via an approximation procedure based on the idea of Young et al. [Novel meshless method for solving the potential problems with arbitrary domain. J Comput Phys 2005;209:290–321] and the boundary integral equations (BIE) for solving two- and three-dimensional potential problems. In the BPM, the boundary of the solution domain is discretized by unequally spaced boundary nodes, with each node having a territory (the point is usually located at the centre of the territory) where the field variables are defined. The BPM has both the merits of the boundary element method (BEM) and the method of fundamental solution (MFS), both of these methods use fundamental solutions which are the two-point functions determined by the source and the observation points only. In addition to the singular properties, the fundamental solutions have the feature that the greater the distance between the two points, the smaller the values of the fundamental solutions will be. In particular, the greater the distances, the smaller the variations of the fundamental solutions. By making use of this feature, most of the off-diagonal coefficients of the system matrix will be computed by one-point scheme in the BPM, which is similar to the one in the MFS. In the BPM, the ‘moving elements’ are introduced by organizing the relevant adjacent nodes tentatively, so that the source points are placed on the real boundary of the solution domain where the resulting weak singular, singular and hypersingular kernel functions of the diagonal coefficients of the system matrix can be evaluated readily by well-developed techniques that are available in the BEM. Thus difficulties encountered in the MFS are removed because of the coincidence of the two points. When the observation point is close to the source point, the integrals of kernel functions can be evaluated by Gauss quadrature over territories.In this paper, the singular and hypersingular equations in the indirect and direct formulations of the BPM are presented corresponding to the relevant BIE for potential problems, where the indirect formulations can be considered as a special form of the MFS. Numerical examples demonstrate the accuracy of solutions of the proposed BPM for potential problems with mixed boundary conditions where good agreements with exact solutions are observed.  相似文献   

20.
The boundary element method (BEM) has been established as an effective means for magnetostatic analysis. Direct BEM formulations for the magnetic vector potential have been developed over the past 20 years. There is a less well-known direct boundary integral equation (BIE) for the magnetic flux density which can be derived by taking the curl of the BIE for the magnetic vector potential and applying properties of the scalar triple product. On first inspection, the ancillary boundary integral equation for the magnetic flux density appears to be homogeneous, but it can be shown that the equation is well-posed and non-homogeneous using appropriate boundary conditions. In the current research, the use of the ancillary boundary integral equation for the magnetic flux density is investigated as a stand-alone equation and in tandem with the direct formulation for the magnetic vector potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号