首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermodynamic miscibility and thermal and dynamic mechanical behaviour of semi‐interpenetrating polymer networks (semi‐IPNs) of crosslinked polyurethane (PU) and linear poly(hydroxyethyl methacrylate) (PHEMA) have been investigated. The free energies of mixing of the semi‐IPN components have been determined by the vapour sorption method and it was established that the parameters are positive and depend on the amount of PHEMA in the semi‐IPN samples. Thermal analyses glass transition temperatures evidenced two in the semi‐IPNs in accordance with the investigation of the thermodynamic miscibility of these systems. Dynamic mechanical analysis revealed a pronounced change in the viscoelastic properties of the PU‐based semi‐IPNs with different amounts of PHEMA in the samples. The semi‐IPNs have two distinct tan δ maxima related to the relaxations of the two polymers in their glass temperature domains. The temperature position of PU relaxation maximum tan δ is invariable but its amplitude decreases in the semi‐IPNs with increasing amount of PHEMA in the systems. The tan δ maximum of PHEMA is shifted to a lower temperature and its amplitude decreases with increasing amount of PU in the semi‐IPNs. The segregation degree of components α was calculated using the viscoelastic properties of semi‐IPNs. It was concluded that the studied semi‐IPNs are two‐phase systems with incomplete phase separation. The different levels of immiscibility lead to the different degree of phase separation in the semi‐IPNs with compositions. Copyright © 2004 Society of Chemical Industry  相似文献   

2.
Semi‐ and full‐interpenetrating polymer networks (IPNs) were prepared using polyurethane (PUR) produced from a canola oil‐based polyol with primary terminal functional groups and poly(methyl methacrylate) (PMMA). The properties of the material were studied and compared using dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), and tensile measurements. The morphology of the IPNs was investigated using atomic force microscopy (AFM). Semi‐IPNs demonstrated different thermal mechanical properties, mechanical properties, phase behavior, and morphology from full IPNs. Both types of IPNs studied are two‐phase systems with incomplete phase separation. However, the extent of phase separation is significantly more advanced in the semi‐IPNs compared with the full IPNs. All the semi‐IPNs exhibited higher values of elongation at break for all proportions of acrylate to polyurethane compared with the corresponding full IPNs. These differences are mainly due to the fact that in the case of semi‐IPNs, one of the constituting polymers remains linear, so that it exhibits a loosely packed network and relatively high mobility, whereas in the case of full IPNs, there is a higher degree of crosslinking, which restricts the mobility of the chains. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
Semi‐1 and semi‐2 interpenetrating polymer networks (IPNs) of poly(vinyl chloride) (PVC) and in situ formed poly(butyl methacrylate) (PBMA) have been synthesized using diallyl phthalate and ethylene glycol dimethacrylate as the crosslinkers of PVC and PBMA, respectively. These were then characterized with reference to their mechanical, thermal, and morphological properties. The mechanical and thermal characteristics revealed modification over the unmodified polymeric systems in relation to their phase morphologies. The semi‐1 IPNs displayed a decrease in their mechanical parameters of modulus and UTS while semi‐2 IPNs exhibited a marginal increase in these two values. The semi‐1 IPNs, however, also revealed a decrease in the elongation and toughness values away from the normal behavior. The thermomechanical behavior of both the systems is in conformity with their mechanicals in displaying the softening characteristics of the system and stabilization over unmodified PVC. The DSC thermograms are also correlated to these observations along with the heterogeneous phase morphology which is displayed by both the systems especially at higher concentration of PBMA incorporation. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
Semiinterpenetrating polymer networks (semi‐IPNs) based on polyurethane (PU) and polyvinylpyrrolidone (PVP) have been synthesized, and their thermodynamic characteristics, thermal properties, and dynamical mechanical properties have been studied to have an insight in their structure as a function of their composition. First, the free energies of mixing of the two polymers in semi‐IPNs based on crosslinked PU and PVP have been determined by the vapor sorption method. It was established that these constituent polymers are not miscible in the semi‐IPNs. The differential scanning calorimetry results evidence the Tg of polyurethane and two Tg for PVP. The dynamic mechanical behavior of the semi‐IPNs has been investigated and is in accordance with their thermal behavior. It was shown that the semi‐IPNs present three distinct relaxations. If the temperature position of PU maximum tan δ is invariable, on the contrary, the situation for the two maxima observed for PVP is more complex. Only the maximum of the highest temperature relaxation is shifted to lower temperature with changing of the semi‐IPNs composition. It was concluded that investigated semi‐IPNs are two‐phase systems with incomplete phase separation. The phase composition was calculated using viscoelastic properties. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 852–862, 2001  相似文献   

5.
Semi‐interpenetrating polymer networks (semi‐IPNs) based on crosslinked polyurethane (PU) and linear polyvinylpyrrolidone (PVP) were synthezised, and their thermal and dynamic mechanical properties and dielectric relaxation behavior were studied to provide insight into their structure, especially according to their composition. The differential scanning calorimetry results showed the glass transitions of the pure components: one glass‐transition temperature (Tg) for PU and two transitions for PVP. Such glass transitions were also present in the semi‐IPNs, whatever their composition. The viscoelastic properties of the semi‐IPNs reflected their thermal behavior; it was shown that the semi‐IPNs presented three distinct dynamic mechanical relaxations related to these three Tg values. Although the temperature position of the PU maximum tan δ of the α‐relaxation was invariable, on the contrary the situation for the two maxima observed for PVP was more complex. Only the maximum of the highest temperature relaxation was shifted to lower temperatures with decreasing PVP content in the semi‐IPNs. In this study, we investigated the molecular mobility of the IPNs by means of dielectric relaxation spectroscopy; six relaxation processes were observed and indexed according the increase in the temperature range: the secondary β‐relaxations related to PU and PVP chains, an α‐relaxation due to the glass–rubber transition of the PU component, two α‐relaxations associated to the glass–rubber transitions of the PVP material, and an ionic conductivity relaxation due to the space charge polarization of PU. The temperature position of the α‐relaxation of PU was invariable in semi‐IPNs, as observed dynamic mechanical analysis measurements. However, the upper α‐relaxation process of PVP shifted to higher temperatures with increasing PVP content in the semi‐IPNs. We concluded that the investigated semi‐IPNs were two‐phase systems with incomplete phase separation and that the content of PVP in the IPNs governed the structure and corresponding properties of such systems through physical interactions. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1191–1201, 2003  相似文献   

6.
In this work we report the photopolymerization of poly(2‐hydroxyethyl methacrylate) (PHEMA) together with a hydrophilic chitosan derivate (carboxymethyl‐chitosan) to yield a semi‐interpenetrating polymer network (semi‐IPN) that was filled with poly(N‐vinylcaprolactam)/poly(ethylene glycol methacrylate) core–shell nanogels in order to enhance the mechanical properties of the resulting hydrogels. The mechanical properties of the nanofilled semi‐IPNs were found to be more suitable for wound dressing applications than the PHEMA hydrogel as described by dynamic mechanical analysis in dry form and submerged in water. This was evidenced by a higher Young's modulus and higher elongation at break in the semi‐IPNs compared to blank PHEMA hydrogels. Furthermore, when the hydrogels were filled with nanogels, there was an elongation at break similar to that of skin with only a slightly lower Young's modulus. © 2019 Society of Chemical Industry  相似文献   

7.
A range of semi‐interpenetrating polymer networks (semi‐IPNs) based on polyurethane (PU) and poly(vinyl pyrrolidone) (PVP) have been synthesized and characterized with respect to their thermodynamic characteristics, morphology, mechanical properties, surface properties, water sorption and bacterial adhesion. The free energies of mixing of PU and PVP in semi‐IPNs have been determined by the vapor sorption method and were shown to be positive for all compositions. The surface properties of semi‐IPNs were investigated using the dynamic contact angle analysis. It was shown that the advancing contact angle changes from 83.1° to 65.3° with increasing PVP from 7.05% to 57.38%. Scanning electron microscopy demonstrated that the semi‐IPNs are two‐phase systems with incomplete phase separation. The mechanical properties reflect the changes in structure of semi‐IPNs with increasing of amounts of PVP in the system. Incorporation of PVP into the semi‐IPN with PU restricts the ability of PVP to sorb water. As infection is likely to be caused by bacterial adherence to biomedical implants, the bacterial adhesion data suggests that the semi‐IPNs with PVP content below 22.52% may be useful for biomedical material applications. Polym. Eng. Sci. 44:940–947, 2004. © 2004 Society of Plastics Engineers.  相似文献   

8.
Semi1 and semi2 interpenetrating polymer networks (IPNs) of PVC and in situ formed PMMA have been synthesized using diallyl phthalate and ethylene glycol dimethacrylate as the crosslinkers of PVC and PMMA, respectively. These two types of IPNs have been compared w.r.t their physical, mechanical, and thermal properties and an endeavor has been made to find a correlation of these properties with the morphology generated in these systems. The semi1 IPNs displayed a decrease in their mechanical parameters and the physical properties as well, while in contrast, the semi2 IPNs exhibited a marginal increase in the corresponding values after an initial drop upto about 15% of crosslinked PMMA incorporation when compared to the crosslinked PVC in the case of semi1 IPN and linear PVC in the case of semi2 IPN. The various samples of semi1 and semi2 IPNs showed a two‐stage degradation typical of PVC, while confirming the increased stability with the samples having higher percentages of PMMA. The influence of crosslinking of the major matrix in semi1 IPN was almost counterbalanced by the influence of crosslinking in the dispersed PMMA phase in the case of semi2 IPN. The softening characteristics as detected by the extent of penetration of the probe, as has been detected by thermomechanical analysis, are in conformity with their mechanicals. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1725–1735, 2005  相似文献   

9.
The curing behavior and physical properties of dicyanate/polyetherimide (PEI) semi‐interpenetrating polymer network (IPN) systems were investigated. Differential scanning calorimetry (DSC) was used to study the curing behavior of the dicyanate/PEI semi‐IPN systems. The curing rate of the semi‐IPN system decreased as the PEI content increased. An autocatalytic reaction mechanism can describe well the curing kinetics of the semi‐IPN systems. The reaction kinetic parameters were determined by fitting DSC conversion data to the kinetic equation. The glass transition temperature of the semi‐IPNs decreased with increasing PEI content. Two glass transitions due to phase‐separated morphology were observed for the semi‐IPN containing over 15 phr (parts per hundred parts of dicyanate resin) PEI. The thermal stability and dynamic mechanical properties of the semi‐IPNs were measured by thermal analysis.  相似文献   

10.
The thermal, dynamic mechanical, and mechanical properties and morphology of two series of semi‐interpenetrating polymer networks (s‐IPNs) based on linear poly(vinyl acetate) (PVAc) and a crosslinked n‐butyl acrylate/1,6‐hexanediol diacrylate copolymer were investigated. The s‐IPN composition was varied with different monoacrylate/diacrylate monomer ratios and PVAc concentrations. The crosslinking density deeply affected the thermal behavior. The results showed that a more densely crosslinked acrylate network promoted phase mixing and a more homogeneous structure. The variation in the linear polymer concentration influenced both the morphology and mechanical properties. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

11.
Semi1 and semi2 interpenetrating polymer networks of poly(vinyl chloride) PVC and in situ formed poly(butyl acrylate) (PBA) have been synthesized and characterized using diallyl phthalate (DAP) and ethylene glycol dimethacrylate (EGDM) as the crosslinkers of PVC and PBA, respectively. These two types of IPNs have been compared with respect to their mechanical and thermal properties. The semi1 IPNs displayed a decrease in their mechanical parameters and the physical properties as well, while in contrast, the semi2 IPNs exhibited a marginal increase in the corresponding values when compared to the crosslinked PVC in the case of semi1 IPN and linear PVC in case of semi2 IPN. The representative samples of semi1 and semi2 IPNs revealed a two‐stage‐degradation typical of PVC while confirming the increased stability of the samples with higher onset temperature of degradation. The softening characteristics as detected by thermomechanical analysis are in conformity with their mechanicals. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
Nanocomposites based on sequential semi–interpenetrating polymer networks (semi–IPNs) of crosslinked polyurethane and linear poly(2‐hydroxyethyl methacrylate) filled with 1–15 wt % of nanofiller densil were prepared and investigated. Nanofiller densil used in an attempt to control the microphase separation of the polymer matrix by polymer–filler interactions. The morphology (SAXS, AFM), mechanical properties (stress–strain), thermal transitions (DSC) and polymer dynamics (DRS, TSDC) of the nanocomposites were investigated. Special attention has been paid to the raising of the hydration properties and the dynamics of water molecules in the nanocomposites in the perspective of biomedical applications. Nanoparticles were found to aggregate partially for higher than 3 and 5 wt % filler loading in semi–IPNs with 17 and 37 wt % PHEMA, respectively. The results show that the good hydration properties of the semi–IPN matrix are preserved in the nanocomposites, which in combination with results of thermal and dielectric techniques revealed also the existence of polymer–polymer and polymer–filler interactions. These interactions results also in the improvement of physical and mechanical properties of the nanocomposites in compare with the neat matrix. The improvement of mechanical properties in combination with hydrophilicity and biocompatibility of nanocomposites are promising for use these materials for biomedical application namely as surgical films for wound treatment and as material for producing the medical devises. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43122.  相似文献   

13.
Semi‐interpenetrating polymer networks (semi‐IPNs) composed of a dicyanate resin and a poly(ether sulfone) (PES) were prepared, and their curing behavior and mechanical properties were investigated. The curing behavior of the dicyanate/PES semi‐IPN systems catalyzed by an organic metal salt was analyzed. Differential scanning calorimetry was used to study the curing behavior of the semi‐IPN systems. The curing rate of the semi‐IPN systems decreased as the PES content increased. An autocatalytic reaction mechanism was used to analyze the curing reaction of the semi‐IPN systems. The glass‐transition temperature of the semi‐IPNs decreased with increasing PES content. The thermal decomposition behavior of the semi‐IPNs was investigated. The morphology of the semi‐IPNs was investigated with scanning electron microscopy. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1079–1084, 2003  相似文献   

14.
A series of novel semi‐2‐interpenetrating polymeric networks (semi‐2‐IPNs) were prepared through blending in solution using two different polyimides, biscitraconamic acid as a precursor of biscitraconimide (MBMI) with various proportions of polyetherimide (PEI) to achieve optimum properties. Biscitraconamic acid was prepared by reacting citraconic anhydride (CA), 3,3',4,4'‐benzophenone tetracarboxylic dianhydride (BTDA) and bis(3‐aminopropyl)phenyl phosphine (BAPPP) and it was characterized by differential scanning calorimetry (DSC), FTIR, and 1H‐NMR spectroscopy. Both biscitraconamic acid and PEI were blended in N,N‐dimethylacetamide (DMAc) solution, casted and thermally cured up to 300°C to give semi‐2‐IPNs. The MBMI/PEI semi‐IPN systems were characterized by UV‐Vis spectroscopy, FTIR spectroscopy and thermal techniques. The phase morphology, isothermal aging, and water uptake of semi‐IPN systems have also been studied. The morphological studies on phase distribution were investigated by scanning electron microscopy (SEM). Thermal performance of MBMI/PEI semi‐IPN systems were evaluated by DSC and thermo gravimetric analysis (TGA). All the compositions of semi‐IPN polyimide system were stable up to 400°C and their thermal stability increased with increase in the content of PEI. Isothermal aging studies done at 300°C for various time periods showed good thermo‐oxidative stability. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
In this article, semi‐interpenetrating polymer network (Semi‐IPNs) based on nitrile rubber (NBR) and poly(methyl methacrylate‐co‐butyl acrylate) (P(MMA‐BA)) were synthesized. The structure and damping properties of the prepared Semi‐IPNs blends were characterized and by fourier transform infrared spectrum (FTIR), dynamic mechanical analysis (DMA), scanning electron microscopy (SEM), thermogravimetric analysis (TGA/DTG), and tensile mechanical properties. The results showed that interpenetrating network based on P(MMA‐BA) and NBR was successfully obtained, which showed the improved thermal stability compared to NBR/P(MMA‐BA)‐based two‐roll mill blends. Furthermore, Semi‐IPNs showed significantly better the dynamic mechanical properties than that of the two‐roll mill system. With the increasing feed ratio of BA and MMA during the preparation of Semi‐IPNs, the loss peak position for P(MMA‐BA) in NBR/PMMA IPNs shifted to a lower temperature from 20°C to ?17°C, and when NBR in Semi‐IPNs was accounted for 40 wt %, the dynamic mechanical thermal analysis showed that much more advanced damping material with wider temperature range (?30°C < T < 80°C) as tan δ > 0.45 can be achieved. Therefore, it was expected as a promising way to obtain the excellent damping materials with good oil‐resisted properties according the Semi‐IPNs system. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40217.  相似文献   

16.
Semi‐1 and semi‐2 interpenetrating polymer networks (IPNs) of poly(vinyl chloride) (PVC) and in situ formed poly(ethyl acrylate) (PEA) have been synthesized using diallyl phthalate and ethylene glycol dimethacrylate as the crosslinkers of PVC and PEA, respectively. These two types of IPNs have been compared with respect to their physical, mechanical, and thermal properties and an endeavor has been made to find a correlation of these properties with the morphology generated in these systems. The semi‐1 IPNs displayed a decrease in their tensile strength and modulus while in contrast; the semi‐2 IPNs exhibited a marginal increase with increasing crosslinked PEA incorporation. The semi‐1 and semi‐2 IPNs containing 10 and 30 wt % of PEA displayed a two‐stage degradation typical of PVC in their thermogravimetric and DSC studies while confirming the increased stability of the samples with higher percentages of PEA. The softening characteristics as detected by the extent of penetration of the thermomechanical probe as has been detected by thermomechanical analysis are in conformity with their mechanicals. The biphasic cocontinuous systems as explicit from the morphological studies reveal fibrillar characteristics in both the systems. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
Hydrogels with environment‐sensitive properties have great potential applications in the controlled drug release field. In this paper, hybrid hydrogels with semi‐interpenetrating polymer networks (semi‐IPNs), composed of poly(N‐isopropylacrylamide) (PNIPAM) as the thermo‐sensitive component by in situ polymerization and self‐assembled collagen nanofibrils as the pH‐sensitive framework, were prepared for controlled release of methyl violet as a model drug. From Fourier transform infrared spectroscopy and scanning electron microscopy, it was indicated that the crosslinking of PNIPAM in the presence of collagen nanofibrils led to the formation of semi‐IPNs with homogeneous porous structure, and the semi‐IPNs showed improved thermal stability and elastic properties compared with the native collagen as determined using differential scanning calorimetry and rheologic measurements. Furthermore, the semi‐IPNs possessed swelling behaviors quite different from those of neat collagen or PNIPAM hydrogel under various pH values and temperatures. Correspondingly, as expected, the drug release behavior in vitro for semi‐IPNs performed variously compared with that for single‐component semi‐IPNs, which revealed the tunable performance of semi‐IPNs for release ability. Finally the thermo‐ and pH‐responsive mechanism of the semi‐IPNs was illuminated to provide guidance for the application of the thermo‐ and pH‐sensitive collagen‐based hybrid hydrogels in controlled drug delivery systems. © 2019 Society of Chemical Industry  相似文献   

18.
Poly(N‐isopropylacrylamide) (PNIPAAm)/poly(ethylene oxide) (PEO) semi‐interpenetrating polymer networks (semi‐IPNs) synthesized by radical polymerization of N‐isopropylacrylamide (NIPAAm) in the presence of PEO. The thermal characterizations of the semi‐IPNs were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and dielectric analysis (DEA). The melting temperature (Tm) of semi‐IPNs appeared at around 60°C using DSC. DEA was employed to ascertain the glass transition temperature (Tg) and determine the activation energy (Ea) of semi‐IPNs. From the results of DEA, semi‐IPNs exhibited one Tg indicating the presence of phase separation in the semi‐IPN, and Tgs of semi‐IPNs were observed with increasing PNIPAAm content. The thermal decomposition of semi‐IPNa was investigated using TGA and appeared at around 370°C. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3922–3927, 2003  相似文献   

19.
Semi‐interpenetrating networks (semi‐IPNs) were prepared from natural rubber (NR) and polystyrene (PS) by the sequential method. In these semi‐IPNs the NR phase was crosslinked while the PS phase was uncrosslinked. Different initiating systems such as dicumyl peroxide (DCP), benzoyl peroxide (BPO), and the azobisisobutyronitrile (AIBN) system were used for polymerizing the PS phase. The blend ratio was varied by controlling the swelling of NR in the styrene monomer. The mechanical properties of the semi‐IPNs, namely, density, tensile strength, tear strength, elongation at break, tension set, tensile set, impact strength, and hardness, were determined. The morphology of different IPNs was studied using scanning electron microscopy. A compact morphology with a homogeneous phase distribution was observed in the semi‐IPNs. The properties of the semi‐IPN do not change much with the initiating system. However, in most cases, the DCP initiating system showed slightly superior performance. The tensile and tear‐strength values of the IPNs were found to increase with increasing plastomer content. The crosslink density of the semi‐IPNs also increased with increase in the polystyrene content. The experimental values were compared with theoretical models such as series, parallel, Halpin Tsai, Coran, Takayanaki, Kerner, and Kunori. The tensile and tear‐fracture surfaces were examined using a scanning electron microscope. The fracture patterns were correlated with the strength and nature of the failure. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2327–2344, 2000  相似文献   

20.
Interpenetrating polymer networks (IPNs) of polydimethylsiloxane (PDMS) and poly(2‐hydroxyethyl methacrylate) (PHEMA) were prepared by sequential method. The dynamic mechanical parameters of obtained IPNs and their variations with the structural composition were evaluated. The results for the IPNs were compared with corresponding physically blended systems. The tensile properties and damping factor (tan δ) were assessed by stress–strain measurement and dynamic mechanical thermal analysis (DMTA), respectively. The glass–rubber transition temperature (Tg) was assessed by DMTA and differential scanning calorimetry (DSC). The results showed higher tensile strength and elongation at break for IPNs than those for physical blends. The shifts of Tg for that two components that make up the IPNs were greater than those for corresponding blends. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3480–3485, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号