首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
An accelerated boundary cloud method (BCM) for boundary‐only analysis of exterior electrostatic problems is presented in this paper. The BCM uses scattered points instead of the classical boundary elements to discretize the surface of the conductors. The dense linear system of equations generated by the BCM are solved by a GMRES iterative solver combined with a singular value decomposition based rapid matrix–vector multiplication technique. The accelerated technique takes advantage of the fact that the integral equation kernel (2D Green's function in our case) is locally smooth and, therefore, can be dramatically compressed by using a singular value decomposition technique. The acceleration technique greatly speeds up the solution phase of the linear system by accelerating the computation of the dense matrix–vector product and reducing the storage required by the BCM. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
    
A new variational formulation for boundary node method (BNM) using a hybrid displacement functional is presented here. The formulation is expressed in terms of domain and boundary variables, and the domain variables are interpolated by classical fundamental solution; while the boundary variables are interpolated by moving least squares (MLS). The main idea is to retain the dimensionality advantages of the BNM, and get a truly meshless method, which does not require a ‘boundary element mesh’, either for the purpose of interpolation of the solution variables, or for the integration of the ‘energy’. All integrals can be easily evaluated over regular shaped domains (in general, semi‐sphere in the 3‐D problem) and their boundaries. Numerical examples presented in this paper for the solution of Laplace's equation in 2‐D show that high rates of convergence with mesh refinement are achievable, and the computational results for unknown variables are most accurate. No further integrations are required to compute the unknown variables inside the domain as in the conventional BEM and BNM. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
    
Combining a modified functional with the moving least‐squares (MLS) approximation, the hybrid boundary node method (Hybrid BNM) is a truly meshless, boundary‐only method. The method may have advantages from the meshless local boundary integral equation (MLBIE) method and also the boundary node method (BNM). In fact, the Hybrid BNN requires only the discrete nodes located on the surface of the domain. The Hybrid BNM has been applied to solve 2D potential problems. In this paper, the Hybrid BNM is extended to solve potential problems in three dimensions. Formulations of the Hybrid BNM for 3D potential problems and the MLS approximation on a generic surface are developed. A general computer code of the Hybrid BNM is implemented in C++. The main drawback of the ‘boundary layer effect’ in the Hybrid BNM in the 2D case is circumvented by an adaptive face integration scheme. The parameters that influence the performance of this method are studied through three different geometries and known analytical fields. Numerical results for the solution of the 3D Laplace's equation show that high convergence rates with mesh refinement and high accuracy are achievable. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
This study investigates the numerical solution of the Laplace and biharmonic equations subjected to noisy boundary data. Since both equations are linear, they are numerically discretized using the Boundary Element Method (BEM), which does not use any solution domain discretization, to reduce the problem to solving a system of linear algebraic equations for the unspecified boundary values. It is shown that when noisy, lower-order derivatives are prescribed on the boundary, then a direct approach, e.g. Gaussian elimination, for solving the resulting discretized system of linear equations produces an unstable, i.e. unbounded and highly oscillatory, numerical solution for the unspecified higher-order boundary derivatives data. In order to overcome this difficulty, and produce a stable solution of the resulting system of linear equations, the singular value decomposition approach (SVD), truncated at an optimal level given by the L-curve method, is employed. © 1998 John Wiley & Sons, Ltd.  相似文献   

5.
    
This paper presents a fast formulation of the hybrid boundary node method (Hybrid BNM) for solving problems governed by Laplace's equation in 3D. The preconditioned GMRES is employed for solving the resulting system of equations. At each iteration step of the GMRES, the matrix–vector multiplication is accelerated by the fast multipole method. Green's kernel function is expanded in terms of spherical harmonic series. An oct‐tree data structure is used to hierarchically subdivide the computational domain into well‐separated cells and to invoke the multipole expansion approximation. Formulations for the local and multipole expansions, and also conversion of multipole to local expansion are given. And a binary tree data structure is applied to accelerate the moving least square approximation on surfaces. All the formulations are implemented in a computer code written in C++. Numerical examples demonstrate the accuracy and efficiency of the proposed approach. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
    
The Boundary Element Method (BEM) is applied to solve numerically some inverse boundary value problems associated to the biharmonic equation which involve over‐ and under‐specified boundary portions of the solution domain. The resulting ill‐conditioned system of linear equations is solved using the regularization and the minimal energy methods, followed by a further application of the Singular Value Decomposition Method (SVD). The regularization method incorporates a smoothing effect into the least squares functional, whilst the minimal energy method is based on minimizing the energy functional for the Laplace equation subject to the linear constraints generated by the BEM discretization of the biharmonic equation. The numerical results are compared with known analytical solutions and the stability of the numerical solution is investigated by introducing noise into the input data. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

7.
    
Moving least‐squares approximation with discontinuous derivative basis functions (MLSA‐DBF) is introduced for analysis of shell structures with slope discontinuities. To deal with shells with arbitrary slope discontinuities, the Cartesian coordinate is introduced in the construction of MLSA on the shell surface. The possible causes of singularity in the moment matrix of MLSA on the shell surface with slope discontinuities are identified, and the Moore–Penrose pseudoinverse is used to obtain the generalized inverse of the singular moment matrix resulting from linear dependency and insufficient influence nodes in the MLSA. Following the proposed formulations for shear deformable shell structures with slope discontinuities in the Cartesian coordinates, several numerical examples are analyzed to demonstrate the performance, validity, accuracy, and convergence properties of the proposed MLSA‐DBF approach. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
    
This work presents a new implementation of the boundary node method (BNM) for numerical solution of Laplace's equation. By coupling the boundary integral equations and the moving least‐squares (MLS) approximation, the BNM is a boundary‐type meshless method. However, it still uses the standard elements for boundary integration and approximation of the geometry, thus loses the advantages of the meshless methods. In our implementation, here called the boundary face method, the boundary integration is performed on boundary faces, which are represented in parametric form exactly as the boundary representation data structure in solid modeling. The integrand quantities, such as the coordinates of Gauss integration points, Jacobian and out normal are calculated directly from the faces rather than from elements. In order to deal with thin structures, a mixed variable interpolation scheme of 1‐D MLS and Lagrange Polynomial for long and narrow faces. An adaptive integration scheme for nearly singular integrals has been developed. Numerical examples show that our implementation can provide much more accurate results than the BNM, and keep reasonable accuracy in some extreme cases, such as very irregular distribution of nodes and thin shells. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
    
In this paper, we present a direct meshless method of boundary integral equation (BIE), known as the boundary element‐free method (BEFM), for two‐dimensional (2D) elastodynamic problems that combines the BIE method for 2D elastodynamics in the Laplace‐transformed domain and the improved moving least‐squares (IMLS) approximation. The formulae for the BEFM for 2D elastodynamic problems are given, and the numerical procedures are also shown. The BEFM is a direct numerical method, in which the basic unknown quantities are the real solutions of the nodal variables, and the boundary conditions can be implemented directly and easily that leads to a greater computational precision. For the purpose of demonstration, some selected numerical examples are solved using the BEFM. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
    
This paper introduces the use of moving least‐squares (MLS) approximations for the development of high‐order finite volume discretizations on unstructured grids. The field variables and their successive derivatives can be accurately reconstructed using this mesh‐free technique in a general nodal arrangement. The methodology proposed is used in the construction of two numerical schemes for the shallow water equations on unstructured grids: a centred Lax–Wendroff method with added shock‐capturing dissipation, and a Godunov‐type upwind scheme, with linear and quadratic reconstructions. This class of mesh‐free techniques provides a robust and general approximation framework which represents an interesting alternative to the existing procedures, allowing, in addition, an accurate computation of the viscous fluxes. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
    
In this study, we first discuss the moving least‐square approximation (MLS) method. In some cases, the MLS may form an ill‐conditioned system of equations so that the solution cannot be correctly obtained. Hence, in this paper, we propose an improved moving least‐square approximation (IMLS) method. In the IMLS method, the orthogonal function system with a weight function is used as the basis function. The IMLS has higher computational efficiency and precision than the MLS, and will not lead to an ill‐conditioned system of equations. Combining the boundary integral equation (BIE) method and the IMLS approximation method, a direct meshless BIE method, the boundary element‐free method (BEFM), for two‐dimensional elasticity is presented. Compared to other meshless BIE methods, BEFM is a direct numerical method in which the basic unknown quantity is the real solution of the nodal variables, and the boundary conditions can be applied easily; hence, it has higher computational precision. For demonstration purpose, selected numerical examples are given. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
    
In this paper the meshless local boundary integral equation (LBIE) method for numerically solving the non‐linear two‐dimensional sine‐Gordon (SG) equation is developed. The method is based on the LBIE with moving least‐squares (MLS) approximation. For the MLS, nodal points spread over the analyzed domain are utilized to approximate the interior and boundary variables. The approximation functions are constructed entirely using a set of scattered nodes, and no element or connectivity of the nodes is needed for either the interpolation or the integration purposes. A time‐stepping method is employed to deal with the time derivative and a simple predictor–corrector scheme is performed to eliminate the non‐linearity. A brief discussion is outlined for numerical integrations in the proposed algorithm. Some examples involving line and ring solitons are demonstrated and the conservation of energy in undamped SG equation is investigated. The final numerical results confirm the ability of method to deal with the unsteady non‐linear problems in large domains. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
    
The current work presents an improved immersed boundary method based on the ideas proposed by Vanella and Balaras (M. Vanella, E. Balaras, A moving‐least‐squares reconstruction for embedded‐boundary formulations, J. Comput. Phys. 228 (2009) 6617–6628). In the method, an improved moving‐least‐squares approximation is employed to build the transfer functions between the Lagrangian points and discrete Eulerian grid points. The main advantage of the improved method is that there is no need to obtain the inverse matrix, which effectively eliminates numerical instabilities caused by matrix inversion and reduces the computational cost significantly. Several different flow problems (Taylor‐Green decaying vortices, flows past a stationary circular cylinder and a sphere, and the sedimentation of a free‐falling sphere in viscous fluid) are simulated to validate the accuracy and efficiency of the method proposed in the present paper. The simulation results show good agreement with previous numerical and experimental results, indicating that the improved immersed boundary method is efficient and reliable in dealing with the fluid–solid interaction problems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
15.
    
The hydrodynamics of planing ships are studied using a finite pressure element method. In this method, a boundary value problem (BVP) is formulated based on linear planing theory; the planing ship is represented by the pressure distribution acting on the wetted bottom of the ship, and the magnitude of this pressure distribution is evaluated using a boundary element method. The pressure is discretized using overlapping pressure pyramids, known as tent functions, so that the resulting distribution is piece‐wise continuous in both longitudinal and transverse directions. A set of linear algebraic equations for the determination of the pressure is then established using a collocation technique. It is found that the matrix of the linear equations is ill conditioned; this leads to oscillatory behaviour of the predicted pressure distribution if the direct solution method of LU decomposition or Gaussian elimination is used to solve the system of linear equations. In the current study, this numerical instability is analysed in detail. It is found that the problem can be addressed by adopting singular value decomposition (SVD) technique for the solution of the linear equations. Using this method, the hydrodynamic results for flat‐bottomed and prismatic planing ships are calculated and a good agreement is demonstrated with Savitsky's empirical relations. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
    
This paper presents a comparison between two high‐order methods. The first one is a high‐order finite volume (FV) discretization on unstructured grids that uses a meshfree method (moving least squares (MLS)) in order to construct a piecewise polynomial reconstruction and evaluate the viscous fluxes. The second method is a discontinuous Galerkin (DG) scheme. Numerical examples of inviscid and viscous flows are presented and the solutions are compared. The accuracy of both methods, for the same grid resolution, is similar, although the DG scheme requires a larger number of degrees of freedom than the FV–MLS method. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
    
A new class of fitted operator finite difference methods are constructed via non‐standard finite difference methods ((NSFDM)s) for the numerical solution of singularly perturbed differential difference equations having both delay and advance arguments. The main idea behind the construction of our method(s) is to replace the denominator function of the classical second‐order derivative with a positive function derived systematically in such a way that it captures significant properties of the governing differential equation and thus provides the reliable numerical results. Unlike other FOFDMs constructed in standard ways, the methods that we present in this paper are fairly simple to construct (and thus enrich the class of fitted operator methods by adding these new methods). These methods are shown to be ε‐uniformly convergent with order two which is the highest possible order of convergence obtained via any fitted operator method for the problems under consideration. This paper further clarifies several doubts, e.g. why a particular scheme is not suitable for the whole range of values of the associated parameters and what could be the possible remedies. Finally, we provide some numerical examples which illustrate the theoretical findings. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
采用移动最小二乘(movingleastsquares,MLS)修正的光滑粒子流体动力学(smoothedparticlehydrodynamics,SPH)算法模拟了一个强制旋转动边界问题模型。提出了一种施加强制旋转粒子动边界方案。阐述了修正方法的原理并给出了具体的修正操作方法。同时,还构建了静边界模型,并分别使用修正的SPH以及商业软件FLUENT计算。对计算结果的比较分析表明:该修正SPH方法,能够消除压力振荡;该方法及动边界处理方案可以有效计算该强制动边界问题,为进一步计算更加复杂模型奠定了理论基础。同时,该方法对于不同领域中的动边界问题也具有一定参考价值。  相似文献   

19.
    
The article presents a novel ECG steganography scheme based on the tunable Q‐factor wavelet transformation (TQWT) and also singular value decomposition (SVD) techniques that ensure better safety and confidentiality of patient information. Initial parameters such as Q, r, and J are used to decompose the cover signal into individual frequency sub‐bands with the tunable Q‐factor wavelet transform (TQWT). The singular value decomposition (SVD) technique is used to further decompose high‐frequency sub‐band coefficients into singular values. The watermark information is then embedded with high‐frequency sub‐band coefficients by involving the quantization process. The performance of this proposed system is successfully evaluated by considering various metrics, such as peak signal to noise ratio (PSNR), structural similarity index (SSIM), percentage residual difference (PRD), and bit error rate (BER). The simulation results of the proposed scheme are observed to be better than other traditional algorithms.  相似文献   

20.
研究了Hankel矩阵方式下交流分量、直流分量和噪声的奇异值分布特点,指出当矩阵阶数足够大时,代表这三个分量的奇异值在总奇异值向量中将被作为单独的坐标被分离开,而其衔接点处存在突变。提出利用二次样条小波对奇异值向量进行变换,并根据其细节信号的峰值位置来确定有效奇异值。研究结果表明,当细节信号的最大峰值位于第二个坐标时,表明原始信号中存在较大直流分量,此时根据第二最大峰值可确定全部有效奇异值,否则就根据最大峰值位置确定有效奇异值。信号处理实例证实了此方法的准确性。利用此法有效地分离出了轴承振动信号中的调制特征,进而据此准确地判断了轴承滚道的损伤情况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号