首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The results, which were obtained by applying the novel three‐dimensional mathematical model proposed and developed earlier [1] to model and analyse the decarburization process of molten steel during the RH and RH‐KTB refining in a 90‐t multifunction RH degasser, showed that under the conditions of the present work, the contributions of the flow, mass diffusion and chemical reactions and other non‐equilibrium processes to the Raleigh‐Onsager dissipation function are not large throughout vacuum circulation refining of molten steel. Thus, it is held everywhere in the whole flow field of the system that the value of the non‐linear dissipation factor is approximately equal to one. The entropy generation and energy dissipation in the system rapidly decrease with increasing refining time. Compared to the work done by the drag force while the bubbles passing through the liquid phase as well as by the viscous and turbulent flow and diffusion processes, the carbon‐oxygen reaction itself plays a more governing role to the entropy production and energy dissipation in the system. The RH refining process of low and ultra‐low carbon steels seems to be close to the linear zone of the non‐equilibrium state. The influences of the viscous and turbulent flow dissipation as well as diffusion processes on the non‐equilibrium activity coefficients of the carbon and oxygen in the molten steel may almost be neglected. Except in the regions where the chemical C‐O reaction takes place (the up‐snorkel zone and the bath in the vacuum vessel), the non‐equilibrium components of the non‐equilibrium activity coefficients of the carbon and oxygen in the molten steel at the other places in the degasser are all tending towards one. The non‐equilibrium effects (mainly, the C‐O reaction itself) give a restraining role on the decarburization of liquid steel in the RH refining process. This model is able to model more reasonably and precisely the non‐equilibrium decarburization process during the vacuum circulation refining of molten steel in comparison to a model without considering the non‐equilibrium effects.  相似文献   

2.
The characteristics of the non‐equilibrium decarburization process during the vacuum circulation (RH) refining of molten steel have been considered and analysed. On the basis of the fundamentals of metallurgical reaction engineering and non‐equilibrium thermodynamics, as well as the two‐fluid model for gas‐liquid two‐phase flow and a modified k‐? model for turbulent flow, a novel three‐dimensional mathematical model for the process has been proposed and developed. The details of the model, including the establishment of the governing equations and the especially modified two‐equation k‐? model, the determination of the appropriate source terms and boundary conditions and others, have been presented. The related parameters of the model have been discussed and determined for the decarburization refining process of molten steel in a 90‐t multifunction RH degasser under RH and RH‐KTB operating conditions.  相似文献   

3.
The mathematical model for decarburisation and degassing in the vacuum circulation refining process of molten steel, proposed and presented earlier, has been applied to the refining process of molten steel in a multifunction RH degasser of 90 t capacity. The decarburisation and degassing processes in the degasser under the RH and RH‐KTB operating conditions have been modelled and analysed using this model. It was demonstrated that for the RH and RH‐KTB refining processes, the results predicted by the model are in good agreement with some plant data. The mean contributions of the three refining sites in six circulation cycles to decarburisation are 10.5 – 11.6, 37.4 – 38.0 and 50.5 – 52.1 % of the overall amount of decarburisation, respectively. The KTB operation can markedly accelerate the decarburisation of molten steel. Using the top blowing oxygen of 6 min with the flow rate of (600 ‐ 1000) m3(STP)/h, the initial carbon mass content of the liquid steel for the RH refining process may be increased to (550 ‐ 700) · 10‐4 from 400 · 10‐4 %. And the treatment time needed for reducing the carbon mass content in the steel to a level of ≤ 20 · 10‐4 % may be shortened over 3 ‐ 4 min. The effectiveness of decarburisation and degassing cannot be obviously improved by increasing the lifting argon blow rate to 900 from 600 I(STP)/min under the operating modes examined in the present work.  相似文献   

4.
A three‐dimensional mathematical model for the molten steel flow during the RH refining process has been applied to the circulatory flow processes in both a practical RH degasser and its water model unit. The model was presented earlier [1] and one of its characteristics is that ladle, snorkels and vacuum vessel are regarded as a whole. Using this model, the fluid flow field and the gas holdups of liquid phases and others have been computed respectively for a 90 t RH degasser and its water model unit with a 1/5 linear scale. The results show that the mathematical model can properly describe the flow pattern of molten steel during the refining process in an RH degasser. Except in the area close to the liquid's free surface and in the zone between the two snorkels in the ladle, a strong mixing of the molten steel occurs, especially in the vacuum vessel. However, there is a boundary layer between the descending liquid stream from the down‐snorkel and its surrounding liquid, which is a typical liquid‐liquid two‐phase flow, and the molten steel in the ladle is not in a perfect mixing state. The lifting gas blown is ascending mostly near the up‐snorkel wall, which is more obvious under the conditions of a practical RH degasser, and the flow pattern of the bubbles and molten steel in the up‐snorkel is closer to an annular flow. The calculated circulation rates for the water model unit at different lifting gas rates are in good agreement with experimentally determined values.  相似文献   

5.
RH真空精炼过程的动态模拟   总被引:2,自引:0,他引:2  
建立了描述RH真空精炼装置内钢液动态脱碳(脱气)模型。对RH真空精炼时的脱碳、脱氧、脱氮和脱氢过程进行了动态模拟研究,考察了浸渍管直径、循环流量、吹氩量、氧含量和真空度对脱碳和脱气过程的影响。动态脱碳(脱气)模型考虑了反应机理,认为脱碳是通过上升管中Ar气泡表面、真空室中钢液的自由表面和真空室钢液内部脱碳反应生成的CO气泡表面进行的,并且考虑了精炼处理时的抽真空制度。该模型能全面描述RH精炼过程中不同时刻钢液中碳、氧、氮和氢的含量,能较好预测实际过程,可用于RH真空精炼过程的优化和新工艺开发。  相似文献   

6.
 通过RH超低碳钢脱碳工业试验,对RH精炼过程工艺参数进行全程跟踪。重点对表观脱碳速率常数Kc进行了测定和评价。结果表明,RH脱碳过程分为3个阶段:抽真空阶段、吹氧脱碳阶段和自然脱碳阶段。稳定生产碳含量小于0.002%(质量分数,下同)的超低碳钢的优化工艺参数为:进站碳含量0.05%~0.06%,氧含量0.04%~0.06%;吹氧期的起始真空度12~15kPa,吹氩强度0.015m3·t-1·min-1;自然脱碳时间大于15min,吹氩强度0.015m3·t-1·min-1,终脱氧前的氧含量<0.035%。  相似文献   

7.
利用CFX数值计算软件建立的数值耦合模型对马钢RH KTB的流场进行了分析,得出了包括钢包、真空室、上升管、下降管的RH全系统的流场状态及其在精炼过程中的变化规律。在RH吹氩气液两相区的处理上,应用了非均相多相流模型。模拟结果表明RH真空室内流场中存在小环流现象。  相似文献   

8.
RH-KTB精炼中钢液溶氧过程动力学的水模拟研究   总被引:3,自引:0,他引:3  
用顶吹CO2-NaOH溶液体系模拟了RH-KTB顶吹氧溶氧过程。通过对碱液吸收CO2反应动力学的研究,考察了操作参数对RH-KTB顶吹氧脱碳过程中溶氧反应的影响。结果表明:提高气相中氧分压、增加提升氩气流量或采用低枪位喷吹都有利于加速溶氧脱碳。实验中还发现:顶吹氧气流量对容积传质系数影响很小,对熔池内的钢液流动状态影响不大。  相似文献   

9.
A three‐dimensional mathematical model for the molten steel flow in a degasser during the RH refining process has been proposed and developed. The physical characteristics of the process, particularly the behaviour of gas‐liquid two‐phase flow in the up‐snorkel and the momentum exchange between the two phases are considered. The ladle, snorkels and vacuum vessel are regarded as a whole in the model, and the gas‐liquid two‐phase flow is treated and described on the basis of the two‐fluid model and using the especially modified two‐equation κ‐? model. The details of the model are presented.  相似文献   

10.
《钢铁冶炼》2013,40(5):427-434
Abstract

A three-dimensional mathematical model for molten steel flow in a whole degasser during the RH (Ruhrstahl–Heraeus) refining process is proposed. The model has been developed considering the physical characteristics of the process, particularly the behaviour of gas–liquid two phase flow in the up snorkel and the momentum exchange between the two phases. The fluid flow fields and gas holdups of liquid phases, among other parameters, in a 90 t RH degasser and a water model unit of one-fifth linear scale have been computed using this mathematical model. The results show that the flow pattern of molten steel in a whole RH degasser can be well represented by the mathematical model. Apart from the area close to the free surface and the zone between the two snorkels in the ladle, the molten steel in an RH degasser, especially in the vacuum vessel, is reasonably fully mixed during the refining process. However, there is a boundary layer between the descending liquid stream from the down snorkel and the surrounding liquid, which is typical liquid–liquid two phase flow, and the molten steel in the ladle is not perfectly mixed. The blown lifting gas ascends mostly near the up snorkel wall, which is more obvious under the conditions of an actual RH degasser, and the flow pattern of bubbles and molten steel in the up snorkel is closer to annular flow. Calculated circulation rates for the water model unit at various lifting gas rates are in good agreement with values determined by means of water modelling experiments.  相似文献   

11.
西昌钢钒厂由于转炉热量不足而以转炉—LF精炼—RH精炼—连铸工艺生产IF钢,为探究RH强制脱碳与自然脱碳工艺生产IF钢精炼效果,采用生产数据统计、氧氮分析、夹杂物自动扫描、扫描电镜和能谱分析等手段,对不同脱碳工艺对顶渣氧化性以及钢的洁净度影响进行了详细研究。结果表明:(1)与自然脱碳工艺炉次相比,采用强制脱碳工艺的炉次在转炉结束与RH进站钢中的平均[O]含量更低;(2)两种工艺脱碳结束钢中的[O]含量基本在同一水平;(3)强制脱碳工艺的炉次在RH结束时渣中平均T.Fe的质量分数降低了1.3%。在能满足RH脱碳效果的前提下,尽量提高转炉终点钢液碳含量、降低钢液氧含量,后续在RH精炼时采用强制吹氧脱碳工艺,适当增大吹氧量来弥补钢中氧,可显著降低IF钢顶渣氧化性。自然脱碳工艺与强制脱碳工艺控制热轧板T.O含量均比较理想;与自然脱碳工艺相比,强制脱碳工艺可有效降低IF钢[N]含量,这与强制脱碳工艺真空室内碳氧反应更剧烈所导致的CO气泡更多和气液反应面积更大有关。脱碳工艺对IF钢热轧板中夹杂物类型、尺寸及数量没有明显影响,夹杂物主要由Al2O3夹杂、Al2O3–TiOx夹杂与其他类夹杂物组成,以夹杂物的等效圆直径表示夹杂物尺寸,以上三类夹杂物平均尺寸分别为4.5、4.4和6.5 μm,且钢中尺寸在8 μm以下的夹杂物数量占比高于75%。在RH精炼过程中,尽量降低RH脱碳结束钢中[O]含量,有利于提高钢液洁净度。   相似文献   

12.
在质量平衡模型的基础上,考虑到钢包顶渣与钢液之间的传氧行为,建立了能够同时准确预报碳、氧含量的脱碳模型.考察了提升气体流量、真空度压降模式、KTB吹氧时机以及初始碳、氧含量对RH脱碳的影响.根据模型计算结果,提出了合理的初始氧碳比,并以此作为KTB吹氧的判断依据.  相似文献   

13.
The fluid flow in a bath in combined top and bottom blowing vacuum‐oxygen decarburization (VOD) refining process of stainless steel has numerically been simulated. The three‐dimensional mathematical model used is essentially based on that proposed in our previous work for the flow in combined side and top blowing argon‐oxygen decarburization (AOD) process, but considering the influence of reduced ambient pressure. Applying it to the flow in the bath of a 120 t VOD vessel under the refining conditions, the results present that the model can fairly well simulate and estimate the flow phenomena. The flow pattern of molten steel in the bath with the combined blowing is a composite result under the common action of the jets from a three‐hole Laval top lance and gas bottom blowing streams. The jets have a leading role on it; the molten steel in the whole bath is in vigorous stirring and circulatory motion during the blowing process. The streams do not alter the basic features of the gas agitation and liquid flow, but can evidently change the local flow pattern of the liquid and increase its turbulent kinetic energy to a certain extent. The flow field and turbulent kinetic energy distribution in the combined blowing with three tuyeres are more uniform than those in the blowing with double tuyeres. Increasing properly the tuyere eccentricities is of advantage for improving the velocity and turbulent kinetic energy distributions, the stirring and mixing result in the practical VOD refining process.  相似文献   

14.
万羽 《特钢技术》2011,(4):38-42
在采用电弧炉+VOD+CC生产Cr不锈连铸坯的生产过程中,VOD精炼的控制对整个生产有着至关重要的作用,而控制Cr不锈VOD精炼过程的关键是吹氧脱碳。在吹氧脱碳过程中,脱碳初期及高碳区、低碳区采用不同的吹氧、吹氩流量及真空度控制,可以提高脱碳速度,同时以氧电势分析仪数据为主,以计算吹氧量、真空度变化、废温变化为辅,能更加准确的控制终点碳,从而提高吹氧脱碳效率。  相似文献   

15.
马钢RH KTB流场的数值模拟   总被引:1,自引:0,他引:1  
利用CFX数值计算软件建立的数值耦合模型对马钢RH KTB的流场进行了分析,得出了包括钢包、真空室、上升管、下降管的RH全系统的流场状态及其在精炼过程中的变化规律。在RH吹氩气液两相区的处理上,应用了非均相多相流模型。模拟结果表明RH真空室内流场中存在小环流现象。  相似文献   

16.
The characteristics and classification of decarburization and denitrogenation in the vacuum vessel for stainless steel production are analyzed. Based on the analysis of movements of the liquid steel and bubbles, the kinetics of decarburization and denitrogenation in the vacuum oxygen decarburization (VOD) process has been studied. A kinetic model of decarburization and denitrogenation has been developed to simulate the VOD process, considering each reaction zone as oxygen blowing crater, bottom blowing plume, steel/slag interface, and plume eye. As a result, it is possible to quantify the contribution of each reaction zone in decarburization and denitrogenation rate at a different stage in the VOD process. Specific trials at a vacuum induction furnace were performed to refine stainless steel in vacuum carbon deoxidation (VCD) and VOD style, respectively. The trial results are in good agreement with the model calculation. Combining the trials and the model calculation and the influence of temperature control, critical carbon content selection on the terminal total [C] + [N] content can be discussed further to provide a reasonable proposal for high-quality ferritic stainless steel production. This article is based on a presentation given at the International Symposium on Liquid Metal Processing and Casting (LMPC 2007), which occurred in September 2007 in Nancy, France.  相似文献   

17.
 为研究RH MFB精炼工艺对脱碳过程的影响,将脱碳机理确定为钢液本体脱碳与CO克服静压力上浮、氩气泡表面脱碳和飞溅液滴脱碳,根据脱碳反应动力学和质量守恒原理建立了RH MFB脱碳数学模型。计算结果表明:降低初始碳含量、增大初始氧含量可使脱碳终点碳含量降低;提高压降速率和吹氩流量、增大浸渍管内径使得脱碳速率增大;在固定氧气流量下,随着吹氧时间的延长,脱碳终点碳含量降低,但脱碳终点氧含量升高。  相似文献   

18.
Mathematical modeling of stainless steelmaking in an AOD (argon‐oxygen decarburisation) converter with side and top combined blowing has been preliminarily investigated. The actual situations of the side and top combined blowing AOD process were analysed. A mathematical model for the whole refining process of stainless steel has been proposed and developed. The model is based on the assumption that one part of the oxygen blown through a top lance reacts with CO escaping from the bath, another part of the oxygen oxidizes the elements in the molten steel droplets splashed by the oxygen jet, and the remaining oxygen penetrates and dissolves into the molten steel through the pit stroked by the jet. All the oxygen entering into the bath oxidizes C, Cr, Si, and Mn dissolved in the steel and also the Fe of the steel melt, but the FeO generated is also an oxidant of C, Cr, Si, and Mn in the steel. During the process, all possible oxidation‐reduction reactions occur simultaneously and reach their equilibria, respectively their combined equilibrium, in competition at the liquid/bubble and liquid/slag interfaces. In the simple side blowing after the top blowing operation is finished, the possible reactions take place simultaneously and reach a combined equilibrium in competition at the liquid/bubble interfaces. The overall decarburization rate in the refining process is the sum of the contributions of both the top and side blowing processes. It is also assumed that at high carbon concentrations, the oxidation rates of elements are mainly dependent upon the supplied oxygen rate, and at low carbon contents, the rate of decarburisation is primarily related to the mass transfer of carbon from the molten steel bulk to the interface. It is further assumed that the non‐reacting oxygen blown into the bath does not accumulate in the steel and will escape from the bath and react with CO in the atmosphere above the bath. The study presents calculations of the refining rate and the mass and heat balances of the system for the whole process. Additionally, the influences of the operating factors, including addition of slag materials, scrap, and alloy agents, the non‐isothermal conditions, the changes in the amounts of metal and slag during the whole refining process, and others have all been considered.  相似文献   

19.
敬业钢铁有限公司现场试验了单嘴浸渍管结构RH炉和弓形浸渍管结构RH炉真空精炼超低碳钢的应用效果,记录两种RH炉提升气体流量和真空度的变化,多次取样检测钢液中w([C])和w([Mn]),分析对比两种RH炉的脱碳效果和混匀时间。结果显示,在真空处理6 min内,两种RH炉的真空度都可降至100 Pa以下,10 min后稳定在50 Pa左右;在真空处理20 min内,前者钢中w([C])基本脱至0.001 0%~0.001 5%,而后者钢中w([C])可以脱至0.000 5%左右,后者的脱碳速率也明显快于前者;前者和后者的混匀时间分别在3和1 min左右。结果表明,后者的冶炼效果明显优于前者,弓形浸渍管比单嘴浸渍管更适用于小吨位RH真空精炼炉。  相似文献   

20.
介绍了芜湖新兴铸管有限责任公司炼钢厂采用RH-LF精炼法生产低碳钢QD08的工艺实践。通过对转炉出站钢水初始条件,RH真空脱碳原理和过程控制,后续LF冶炼3个方面的分析研究,结果表明,初始钢水控制条件为[C] 0.04%~0.10%,[0]>300×10-6,转炉终点出钢温度T≥1 650℃。随真空处理时间延长,真空度降低,真空室内PCO减少,碳氧浓度积呈降低的趋势,真空室内因发生碳氧反应进行脱碳,RH真空脱碳满足热力学条件;脱碳速率的变化规律为先增大后减小,脱碳速率有一定的规律;RH真空处理后的钢水需在LF完成脱硫、升温、合金化等操作,并且需保证终渣量20~23 kg/t,终渣(FeO)+(MnO)<1.2%,碱度R≥3.5等工艺条件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号