共查询到20条相似文献,搜索用时 15 毫秒
1.
Proton‐conductive inorganic–organic hybrid intermediate‐temperature membranes were prepared from 3‐glycidoxypropyltrimethoxysilane (GPTMS) and 1‐hydroxyethane‐1,1‐diphosphonic acid (HEDPA) by sol–gel process. To prevent the leaching out of phosphonic acid, triethylamine was used as catalyst to promote the reaction of HEDPA and GPTMS to immobilize phosphonic acid groups. Fourier transform infrared spectra revealed that phosphonic acid groups of HEDPA were chemically bounded to organosiloxane network as a result of the reaction of P? OH of HEDPA and epoxy ring of GPTMS. TG‐DSC results indicated that the hybrid membranes were thermally stable up to 250°C. The proton conductivity of the hybrid membranes increased with temperature from 30 to 130°C. The proton conductivity of hybrid membrane with the molar ratio of GPTMS/HEDPA = 2/1 can reach up to 1.0 × 10?3 S/cm under anhydrous condition at 130°C, which reveals that this membrane is a promising proton exchange membrane for intermediate‐temperature proton exchange membrane fuel cell. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献
2.
The properties of nanostructured plastics are determined by complex relationships between the type and size of the nanoreinforcement, the interface and chemical interaction between the nanoreinforcement and the polymeric chain, along with macroscopic processing and microstructural effects. In this article, we investigated the thermal and viscoelastic property enhancement on crosslinked epoxy using two types of nanoreinforcement, namely, organoion exchange clay and polymerizable polyhedral oligomeric silsesquioxane (POSS) macromers. Glass transitions of these nanocomposites were studied using differential scanning calorimetry (DSC). Small-strain stress relaxation under uniaxial deformation was examined to provide insights into the time-dependent viscoelastic behavior of these nanocomposites. Since the size of the POSS macromer is comparable to the distance between molecular junctions, as we increase the amount of POSS macromers, the glass transition temperature Tg as observed by DSC, increases. However, for an epoxy network reinforced with clay, we did not observe any effect on the Tg due to the presence of clay reinforcements. In small-strain stress relaxation experiments, both types of reinforcement provided some enhancement in creep resistance, namely, the characteristic relaxation time, as determined using a stretched exponential relaxation function increased with the addition of reinforcements. However, due to different reinforcement mechanisms, enhancement in the instantaneous modulus was observed for clay-reinforced epoxies, while the instantaneous modulus was not effected in POSS–epoxy nanocomposites. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 1993–2001, 1999 相似文献
3.
A macroazoinitiator (MAI) containing a poly(ethylene oxide) (PEO) block was used with a methyl methacrylate monomer to prepare polymer particles in ethanol/H2O solutions. The effects of the monomer/MAI ratio (RMI) and H2O content in the solutions on the molecular weight, particle diameters, and chemical structure of the resulting polymer particles were investigated. The reaction mixtures showed three kinds of states, which were milky colloid solutions, macrogels and/or precipitations, and clear solutions. The colloid solutions were obtained in the solutions with an H2O content of about 50–90 vol % and a RMI of 20–400. In the colloid solutions, core–shell nanospheres consisting of PEO shells and poly(methyl methacrylate) (PMMA) cores were predominantly obtained. In the specific conditions close to the area of gel and/or precipitation formation, particles connected about 0.5–5 μm in length were obtained. Multiblock copolymers nanospheres tended to be obtained with lower RMIs, and PMMA‐PEO‐PMMA tri‐bloc and/or PMMA‐PEO di‐block copolymer nanospheres were obtained with higher RMIs. The solubility of the monomer and the generated polymer in solutions may have affected the polymerization development and the state of the products. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
4.
In this study, we conducted the reversible addition–fragmentation chain‐transfer (RAFT) polymerization of styrene (St) in a miniemulsion system stabilized by two different stabilizers, ammonlysis poly(styrene‐alt‐maleic anhydride) (SMA) and sodium dodecyl sulfate (SDS), with identical reaction conditions. The main objective was to compare the polymerization kinetics, living character, latex stability, and particle morphology. The macro‐RAFT agent used in both systems was SMA, which was obtained by RAFT solution polymerization mediated by 1‐phenylethyl phenyldithioacetate. The experimental results show that the St RAFT miniemulsion polymerization stabilized by SDS exhibited a better living character than that stabilized by ammonlysis SMA. The final latices were very stable in two systems, but different stabilizers had an obvious effect on the polymerization kinetics, living character, and particle morphology. All of the particles obtained by RAFT miniemulsion polymerization stabilized by SDS were solid, but an obvious core–shell structure was observed in the miniemulsion system stabilized by ammonlysis SMA. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献
5.
A core–shell nanosilica (nano‐SiO2)/fluorinated acrylic copolymer latex, where nano‐SiO2 served as the core and a copolymer of butyl acrylate, methyl methacrylate, and 2,2,2‐trifluoroethyl methacrylate (TFEMA) served as the shell, was synthesized in this study by seed emulsion polymerization. The compatibility between the core and shell was enhanced by the introduction of vinyl trimethoxysilane on the surface of nano‐SiO2. The morphology and particle size of the nano‐SiO2/poly(methyl methacrylate–butyl acrylate–2,2,2‐trifluoroethyl methacrylate) [P(MMA–BA–TFEMA)] core–shell latex were characterized by transmission electron microscopy. The properties and surface energy of films formed by the nano‐SiO2/P(MMA–BA–TFEMA) latex were analyzed by Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, scanning electron microscopy/energy‐dispersive X‐ray spectroscopy, and static contact angle measurement. The analyzed results indicate that the nano‐SiO2/P(MMA–BA–TFEMA) latex presented uniform spherical core–shell particles about 45 nm in diameter. Favorable characteristics in the latex film and the lowest surface energy were obtained with 30 wt % TFEMA; this was due to the optimal migration of fluorine to the surface during film formation. The mechanical properties of the films were significantly improved by 1.0–1.5 wt % modified nano‐SiO2. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
6.
Interfacially initiated microemulsion copolymerizations of n‐butyl methacrylate (BMA) and N‐vinyl pyrrolidone (NVP) by the redox initiation couple of benzoyl peroxide and ferrous sulfate were carried out with Tween 80 and n‐butanol as the surfactant and cosurfactant, respectively. Fourier transform infrared spectroscopy and X‐ray photoelectron spectroscopy were recorded to analyze the chemical composition of the latex particles. Transmission electron microscopy was used to observe the particle morphology and dynamic light scattering to determine the particle size. The results demonstrated that interfacially initiated microemulsion polymerization prompted the copolymerization of the water‐soluble NVP monomer with the oil‐soluble BMA monomer to form core–shell nanoparticles. The influence of the surfactant concentration, BMA amount, and temperature on the particle size and polymerization rate was investigated. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3751–3757, 2006 相似文献
7.
Fe3O4/poly(styrene‐co‐maleic anhydride) core–shell composite microspheres, suitable for binding enzymes, were prepared using magnetite particles as seeds by copolymerization of styrene and maleic anhydride. The magnetite particles were encapsulated by polyethylene glycol, which improved the affinity between the magnetite particles and the monomers, thus showing that the size of the microspheres, the amount of the surface anhydrides, and the magnetite content in the composite are highly dependent on magnetite particles, comonomer ratio, and dispersion medium used in the polymerization. The composite microspheres, having 0.08–0.8 μm diameter and containing 100–800 μg magnetite/g microspheres and 0–18 mmol surface‐anhydride groups/g microsphere, were obtained. Free α‐amylase was immobilized on the microspheres containing reactive surface‐anhydride groups by covalent binding. The effects of immobilization on the properties of the immobilized α‐amylase [magnetic immobilized enzyme (MIE)] were studied. The activity of MIE and protein binding capacity reached 113,800 U and 544.3 mg/g dry microspheres, respectively. The activity recovery was 47.2%. The MIE had higher optimum temperature and pH compared with those of free α‐amylase and showed excellent thermal, storage, pH, and operational stability. Furthermore, it can be easily separated in a magnetic field and reused repeatedly. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 328–335, 2005 相似文献
8.
Core–shell poly(acrylic acid)/polystyrene/SiO2 (PAA/PS/SiO2) hybrid microspheres were prepared by dispersion polymerization with three stages in ethanol and ethyl acetate mixture medium. Using vinyltriethoxysilane (VTEOS) as silane agent, functional silica particles structured vinyl groups on surfaces were prepared by hydrolysis and polycondensation of tetraethoxysilane and VTEOS in core stage. Then, the silica particles were used as seeds to copolymerize with styrene and acrylic acid sequentially in shell stage I and stage II to form PAA/PS/SiO2 hybrid microspheres. Transmission electron microscope results show that most PAA/PS/SiO2 hybrid microspheres are about 40 nm in diameter, and the silica cores are about 15 nm in diameter, which covered with a layer of PS about 7.5‐nm thick and a layer of PAA about 5‐nm thick. This core–shell structure is also conformed by Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy, and differential scanning calorimetry. FTIR results show that silica core, PS shell, and PAA outermost shell are bonded by covalents. In the core–shell PAA/PS/SiO2 hybrid microsphere, the silica core is rigidity, and the PAA outermost shell is polarity, while the PS layer may work as lubricant owning to its superior processing rheological property in polymer blending. These core–shell PAA/PS/SiO2 hybrid microspheres have potential as new materials for polar polymer modification. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1729–1733, 2006 相似文献
9.
Proton conductive inorganic–organic hybrid membranes were synthesized from styrene derivatives of alkoxysilane and ethyl 2-[3-(dihydroxyphosphonyl)-2-oxopropyl] acrylate (EPA) through copolymerization followed by sol–gel reaction. Self-standing, homogeneous and transparent hybrid membranes with chemically bound phosphonic acid groups were synthesized. FT-IR analysis exhibited the hybrid membranes included phosphonic acid groups. 13C and 29Si NMR studies indicated that alkoxysilyl functionalized styrene derivatives were not only copolymerized with EPA but also condensed yielding Si–O–Si linkages by sol–gel reaction. TG–DTA analysis revealed that these membranes were thermally stable up to 200 °C in dry O2. The proton conductivities of the hybrid membranes increased with phosphonic acid content and temperature. The P/Si ratio of the membrane was dependent on the number of alkoxy group in the starting alkoxysilane. The hybrid membrane from (dimethylmethoxysilylmethyl)styrene (DMMSMS(M))/EPA = 1/6 revealed proton conductivities of 6.3 × 10−3 and 2.4 × 10−4 S cm−1 at 68.0% relative humidity and 18.8% relative humidity, respectively, at 140 °C. 相似文献
10.
Core–shell microspheres made from glass beads as the core phase and polysulfone (PSf) as the shell phase can act as an absorbent in the separation process or a supporter for chemical reactions. Based on phase‐inversion principles, a two‐step sol–gel method was developed in this work in which ether was added first and H2O was added second to a PSf‐containing dimethyformamide (DMF) solution to help PSf solidify on the surface of glass beads. The results from scanning electron microscopy, Fourier transform IR, and X‐ray photoelectron spectroscopy showed that a dense layer of PSf (thin to several microns) was coated on the glass beads and the core–shell microspheres were almost monodispersed. The utilization percentages of the glass beads and PSf were high as 100 and 80%, respectively. The thickness of the PSf membrane was calculated to be about 4.3 μm. To obtain well‐monodispersed microspheres, the practical volume ratio of ether to DMF was recommended to be larger than 4.5. The results suggested that the two‐step sol–gel method is a highly efficient process for preparation of glass bead/PSf core–shell microspheres. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3365–3369, 2006 相似文献
11.
Glycidyl methacrylate functionalized acrylonitrile–butadiene–styrene (ABS‐g‐GMA) particles were prepared and used to toughen polylactide (PLA). The characteristic absorption at 1728 cm?1 of the Fourier transform infrared spectra indicated that glycidyl methacrylate (GMA) was grafted onto the polybutadiene phase of acrylonitrile–butadiene–styrene (ABS). Chemical reactions analysis indicated that compatibilization and crosslinking reactions took place simultaneously between the epoxy groups of ABS‐g‐GMA and the end carboxyl or hydroxyl groups of PLA and that the increase of GMA content improved the reaction degree. Scanning electron microscopy results showed that 1 wt % GMA was sufficient to satisfy the compatibilization and that ABS‐g‐GMA particles with 1 wt % GMA dispersed in PLA uniformly. A further increase of GMA content induced the agglomeration of ABS‐g‐GMA particles because of crosslinking reactions. Dynamic mechanical analysis testing showed that the miscibility between PLA and ABS improved with the introduction of GMA onto ABS particles because of compatibilization reactions. The storage modulus decreased for the PLA blends with increasing GMA content. The decrease in the storage modulus was due to the chemical reactions in the PLA/ABS‐g‐GMA blends, which improved the viscosity and decreased the crystallization of PLA. A notched impact strength of 540 J/m was achieved for the PLA/ABS‐g‐GMA blend with 1 wt % GMA, which was 27 times than the impact strength of pure PLA, and a further increase in the GMA content in the ABS‐g‐GMA particles was not beneficial to the toughness improvement. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
12.
Conductive polymer particles, polyaniline (PANI)‐coated poly(methyl methacrylate–butyl acrylate–acrylic acid) [P(MMA–BA–AA)] nanoparticles, were prepared. The P(MMA–BA–AA)/PANI core–shell complex particles were synthesized with a two‐step miniemulsion polymerization method with P(MMA–BA–AA) as the core and PANI as the shell. The first step was to prepare the P(MMA–BA–AA) latex particles as the core via miniemulsion polymerization and then to prepare the P(MMA–BA–AA)/PANI core–shell particles. The aniline monomer was added to the mixture of water and core nanoparticles. The aniline monomer could be attracted near the outer surface of the core particles. The polymerization of aniline was started under the action of ammonium persulfate (APS). The final product was the desired core–shell nanoparticles. The morphology of the P(MMA–BA–AA) and P(MMA–BA–AA)/PANI particles was characterized with transmission electron microscopy. The core–shell structure of the P(MMA–BA–AA)/PANI composites was further determined by Fourier transform spectroscopy and ultraviolet–visible measurements. The conductive flakes made from the core–shell latexes were prepared, and the electrical conductivities of the flakes were studied. The highest conductivity of the P(MMA–BA–AA)/PANI pellets was 2.05 S/cm. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献
13.
Inorganic–organic boron–silicon–acetylene hybrid polymer (PABS) was prepared by the polycondensation reaction between phenylboric acid and diphenyldichlorosilane and then terminated by phenylacetylene. The structure was characterized by using FTIR, 13C‐NMR, 1H‐NMR, and GPC. PABS was a kind of resin exhibited high viscous at room temperature and good solubility in common organic solvents. The thermal and oxidative properties were evaluated by DSC and TGA. Exothermal peak at 370°C observed by DSC was attributed to reaction of the acetylene units. PABS showed excellent thermal and oxidative stability, and TGA exhibited the temperature of 5% weight loss (Td5) was 625°C and char yield at 900°C was 90.0% in nitrogen. Surprisingly, both Td5 and char yield at 900°C showed slightly increase in air, which was 638°C and 90.9%, respectively. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
14.
Monodisperse crosslinked core–shell micrometer‐sized microspheres bearing a brightly blue fluorescent dye, carbazole, and containing various functional groups in the shell layers were prepared by a two‐stage distillation–precipitation polymerization in acetonitrile in the absence of any stabilizer. Commercial divinylbenzene (DVB), containing 80 vol.% of DVB, was polymerized by distillation–precipitation in acetonitrile without any stabilizer using 2,2′‐azobisisobutyronitrile (AIBN) as the initiator for the first stage of polymerization which resulted in monodisperse polyDVB microspheres used as the core. Several functional monomers, including 2‐hydroxyethyl methacrylate and acrylonitrile together with N‐vinylcarbazole blue fluorescent comonomer, were incorporated into the shell layers with AIBN as initiator during the second stage of polymerization. The resultant core–shell polymer microspheres were characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, UV‐visible spectroscopy and fluorescence spectroscopy. Copyright © 2006 Society of Chemical Industry 相似文献
15.
BACKGROUND: To create a hydrophobic surface, a commonly used two‐step process is the formation of a rough surface and its subsequent modification with materials of low surface energy. Here, a new method for making a hydrophobic surface is proposed using emulsion copolymerization with a low‐surface‐energy fluoropolymer in the presence of a high percentage of silica particles creating a well‐spread roughness. RESULTS: Irregular core–shell structural composite particles such as of snowman shape and sandwich shape were obtained and characterized. The hydrophobicity and chemical structure of the hybrid film were investigated. It was found that strong inter‐ and intramolecular chemical bonding in the composite film may improve the properties of the hybrid film. Enrichment of fluorine on the film surface and well‐distributed roughness due to the silica particles covered by the fluoropolymer contribute to the increased hydrophobicity of the film. The water contact angle on the film increased from 106 ± 2° to 135 ± 2°. CONCLUSION: The stable core–shell hybrid latex synthesized in this work will be of use in preparing high‐performance hydrophobic aqueous coatings. Copyright © 2008 Society of Chemical Industry 相似文献
16.
Nanometer scale particles of seed latex were successfully prepared by polymerization induced by gamma rays. By modification of the coupling agent 3‐methacryloxylpropyltrimethoxylsilane (MPS) at the surface of polystyrene (PSt) particles, polydimethylsiloxane (PDMS) was introduced outside the PSt particles and composite latex particles with a core–shell (PSt–PDMS) structure were successfully prepared. Because of the chemical bond linkage between the core and the shell, such a structure is stable. Direct evidence of the core–shell structure was observed by transmission electron microscopy (TEM). In addition the chemical bond linkage was confirmed by Fourier‐transfer infrared (FT‐IR) spectroscopy. An indirect proof of the core–shell structure was given by water absorption ratio determination of the different samples. Copyright © 2004 Society of Chemical Industry 相似文献
17.
Maleic anhydride functionalized acrylonitrile–butadiene–styrene copolymer (ABS‐g‐MA) was used as an impact modifier of polyamide 6 (PA6). Epoxy resin was introduced into PA6/ABS‐g‐MA blends to further improve their properties. Notched Izod impact tests showed that the impact strength of PA6/ABS‐g‐MA could be improved from 253 to 800 J/m with the addition of epoxy resin when the ABS‐g‐MA content was set at 25 wt %. Differential scanning calorimetry results showed that the addition of epoxy resin made the crystallization temperature and melting temperature shift to lower temperatures; this indicated the decrease in the PA6 crystallization ability. Dynamic mechanical analysis testing showed that the addition of epoxy resin induced the glass‐transition temperature of PA6 and the styrene‐co‐acrylonitrile copolymer phase to shift to higher temperatures due to the chemical reactions between PA6, ABS‐g‐MA, and epoxy resin. The scanning electron microscopy results indicated that the ABS‐g‐MA copolymer dispersed into the PA6 matrix uniformly and that the phase morphology of the PA6/ABS‐g‐MA blends did not change with the addition of the epoxy resin. Transmission electron microscopy showed that the epoxy resin did not change the deformation mechanisms of the PA6/ABS‐g‐MA blends. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
18.
Naixin Wang Guojun Zhang Shulan Ji Yiqun Fan 《American Institute of Chemical Engineers》2012,58(10):3176-3182
Multilayer membranes constructed layer‐by‐layer (LbL) is finding increasing importance in many separation applications. The efficient construction of LbL multilayer on to hollow fiber substrates may offer many new opportunities for industrial applications. An organic–inorganic composite hollow fiber membrane has been developed using a dynamic LbL self‐assembly. This poly(acrylic acid)/poly(ethyleneimine) multilayer was dynamically assembled onto the inner surfaces of ceramic hollow fiber porous substrates pretreated by Dynasylan Ameo silane coupling agents. The hollow fibers were subsequently heat crosslinked to obtain stable permselective membranes. The formation of multilayers on the hollow fibers was characterized with a SEM, EDX, an electrokinetic analyzer and IR spectra. The effects of layer number, feed temperature and water content in the feed on the pervaporation performance have been investigated. To the best of our knowledge, this is the first report of LbL assembly of polymer building blocks onto ceramic hollow fiber porous substrates. © 2011 American Institute of Chemical Engineers AIChE J, 58: 3176–3182, 2012 相似文献
19.
Adaptive Polymeric Coatings with Self‐Reporting and Self‐Healing Dual Functions from Porous Core–Shell Nanostructures 下载免费PDF全文
Jun‐Peng Wang Jun‐Kuo Wang Qiong Zhou Zhan Li Yongsheng Han Yan Song Shuo Yang Xiaoke Song Tao Qi Helmuth Möhwald Dmitry Shchukin Guo Liang Li 《大分子材料与工程》2018,303(4)
In biological system, early detection and treatment at the same moment is highly required. For synthetic materials, it is demanding to develop materials that possess self‐reporting of early damage and self‐healing simultaneously. This dual function is achieved in this work by introducing an intelligent pH‐responsive coatings based on poly(divinylbenzene)‐graft‐poly(divinylbenzene‐co‐methacrylic acid) (PDVB‐graft‐P(DVB‐co‐AA)) core–shell microspheres as smart components of the polymer coatings for corrosion protection. The key component, synthesized PDVB‐graft‐P(DVB‐co‐AA) core–shell microspheres are porous and pH responsive. The porosity allows for encapsulation of the corrosion inhibitor of benzotriazole and the fluorescent probe, coumarin. Both loading capacities can be up to about 15 wt%. The polymeric coatings doped with the synthesized microspheres can adapt immediately to the varied variation in pH value from the electrochemical corrosion reaction and release active molecules on demand onto the damaged cracks of the coatings on metal surfaces. It leads simultaneously to the dual functions of self‐healing and self‐reporting. The corrosion area can be self‐reported in 6 h, while the substrate can be protected at least for 1 month in 3.5 wt% NaCl solution. These pH‐responsive materials with self‐reporting and self‐healing dual functions are highly expected to have a bright future due to their smart, long‐lasting, recyclable, and multifunctional properties. 相似文献
20.
Fluorinated polyacrylate latices with core–shell structure were prepared by semi‐continuous emulsion polymerization, using a mixed emulsifier system composed of a reactive emulsifier and a small amount of anionic emulsifier. The conversion and chemical components of the final latices were studied by gravimetric methods and Fourier‐transform infrared (FTIR) spectrometry, respectively. The structure of the latex particles was determined by differential scanning calorimetry (DSC), transmission electron microscopy (TEM) and particle size analysis. The latex films exhibited a low surface energy and high water‐contact angles. The surface analysis from X‐ray photoelectron spectroscopy (XPS) revealed that the fluorinated components preferentially self‐organized at the film–air interface. From XPS depth profiling of the film, it was found that a gradient concentration of fluorine existed in the structure of the latex film from the film–air interface to the film–glass interface. Compared with the core–shell structure with a fluorinated core, the core–shell structure with a fluorinated shell was more effective for modifying the properties of the latex films. Copyright © 2005 Society of Chemical Industry 相似文献