首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methods for a posteriori error estimation for finite element solutions are well established and widely used in engineering practice for linear boundary value problems. In contrast here we are concerned with finite elasticity and error estimation and adaptivity in this context. In the paper a brief outline of continuum theory of finite elasticity is first given. Using the residuals in the equilibrium conditions the discretization error of the finite element solution is estimated both locally and globally. The proposed error estimator is physically interpreted in the energy sense. We then present and discuss the convergence behaviour of the discretization error in uniformly and adaptively refined finite element sequences.  相似文献   

2.
In part I of this investigation, we proved that the standard a posteriori estimates, based only on local computations, may severely underestimate the exact error for the classes of wave-numbers and the types of meshes employed in engineering analyses. We showed that this is due to the fact that the local estimators do not measure the pollution effect inherent to the FE-solutions of Helmholtz' equation with large wavenumber. Here, we construct a posteriori estimates of the pollution error. We demonstrate that these estimates are reliable and can be used to correct the standard a posteriori error estimates in any patch of elements of interest. © 1997 John Wiley & Sons, Ltd.  相似文献   

3.
The present work deals with an a posteriori error estimator for linear finite element analysis, based on a stress recovery procedure called Recovery by Compatibility in Patches. The key idea of this procedure is to recover improved stresses by minimizing the complementary energy over patches of elements. Displacements computed by the finite element analysis are prescribed on the boundary of the patch. Here, a new form of this recovery procedure is presented. Adopting a different patch configuration, centred upon an element instead of a node, allows to drastically simplify the recovery process, thus improving efficiency and making the implementation in finite element codes much easier. The robustness tests demonstrate that the error estimator associated to the new form of the recovery procedure retains the very good properties of the original one, such as superconvergence. The numerical results on two common benchmark problems confirm the effectiveness of the proposed error estimator, which appears to be competitive with those currently available. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
A minimal remeshing finite element method for crack growth is presented. Discontinuous enrichment functions are added to the finite element approximation to account for the presence of the crack. This method allows the crack to be arbitrarily aligned within the mesh. For severely curved cracks, remeshing may be needed but only away from the crack tip where remeshing is much easier. Results are presented for a wide range of two‐dimensional crack problems showing excellent accuracy. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

5.
This paper addresses the construction of guaranteed computable estimates for fully discrete solutions of parabolic problems. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
In References 1 and 2 we showed that the error in the finite-element solution has two parts, the local error and the pollution error, and we studied the effect of the pollution error on the quality of the local error-indicators and the quality of the derivatives recovered by local post-processing. Here we show that it is possible to construct a posteriori estimates of the pollution error in any patch of elements by employing the local error-indicators over the mesh outside the patch. We also give an algorithm for the adaptive control of the pollution error in any patch of elements of interest.  相似文献   

7.
Two triangular elements of class C0 developed on the basis of the principle of complementary work are applied in the static analysis of a thin plate. Some techniques to widen the versatility of the equilibrium approach for the finite element method are presented. Plates of various shapes subjected to diverse types of loading are considered. The results are compared with outcomes obtained by use of the displacement-based finite element method. By use of these two dual types of solutions, the error of the approximate solution is calculated. The lower and upper bounds for the strain energy are found.  相似文献   

8.
The partition of unity for localization in adaptive finite element method (FEM) for elliptic partial differential equations has been proposed in Carstensen and Funken (SIAM J. Sci. Comput. 2000; 21 : 1465–1484) and is applied therein to the Laplace problem. A direct adaptation to linear elasticity in this paper yields a first estimator ηL based on patch‐oriented local‐weighted interface problems. The global Korn inequality with a constant CKorn yields reliability for any finite element approximation uh to the exact displacement u. In order to localize this inequality further and so to involve the global constant CKorn directly in the local computations, we deduce a new error estimator µL. The latter estimator is based on local‐weighted interface problems with rigid body motions (RBM) as a kernel and so leads to effective estimates only if RBM are included in the local FE test functions. Therefore, the excluded first‐order FEM has to be enlarged by RBM, which leads to a partition of unit method (PUM) with RBM, called P1+RBM or to second‐order FEMs, called P2 FEM. For P1+RBM and P2 FEM (or even higher‐order schemes) one obtains the sharper reliability estimate . Efficiency holds in the strict sense of . The local‐weighted interface problems behind the implicit error estimators ηL and µL are usually not exactly solvable and are rather approximated by some FEM on a refined mesh and/or with a higher‐order FEM. The computable approximations are shown to be reliable in the sense of . The oscillations are known functions of the given data and higher‐order terms if the data are smooth for first‐order FEM. The mathematical proofs are based on weighted Korn inequalities and inverse estimates combined with standard arguments. The numerical experiments for uniform and adapted FEM on benchmarks such as an L‐shape problem, Cook's membrane, or a slit problem validate the theoretical estimates and also concern numerical bounds for CKorn and the locking phenomena. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents and exercises a general structure for an object‐oriented‐enriched finite element code. The programming environment provides a robust tool for extended finite element (XFEM) computations and a modular and extensible system. The programme structure has been designed to meet all natural requirements for modularity, extensibility, and robustness. To facilitate mesh–geometry interactions with hundreds of enrichment items, a mesh generator and mesh database are included. The salient features of the programme are: flexibility in the integration schemes (subtriangles, subquadrilaterals, independent near‐tip, and discontinuous quadrature rules); domain integral methods for homogeneous and bi‐material interface cracks arbitrarily oriented with respect to the mesh; geometry is described and updated by level sets, vector level sets or a standard method; standard and enriched approximations are independent; enrichment detection schemes: topological, geometrical, narrow‐band, etc.; multi‐material problem with an arbitrary number of interfaces and slip‐interfaces; non‐linear material models such as J2 plasticity with linear, isotropic and kinematic hardening. To illustrate the possible applications of our paradigm, we present 2D linear elastic fracture mechanics for hundreds of cracks with local near‐tip refinement, and crack propagation in two dimensions as well as complex 3D industrial problems. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
This paper presents a new stress recovery technique for the generalized/extended finite element method (G/XFEM) and for the stable generalized FEM (SGFEM). The recovery procedure is based on a locally weighted L2 projection of raw stresses over element patches; the set of elements sharing a node. Such projection leads to a block-diagonal system of equations for the recovered stresses. The recovery procedure can be used with GFEM and SGFEM approximations based on any choice of elements and enrichment functions. Here, the focus is on low-order 2D approximations for linear elastic fracture problems. A procedure for computing recovered stresses at re-entrant corners of any internal angle is also presented. The proposed stress recovery technique is used to define a Zienkiewicz-Zhu (ZZ) a posteriori error estimator for the G/XFEM and the SGFEM. The accuracy, computational cost, and convergence rate of recovered stresses together with the quality of the ZZ estimator, including its effectivity index, are demonstrated in problems with smooth and singular solutions.  相似文献   

11.
An extended finite element method (X‐FEM) for three‐dimensional crack modelling is described. A discontinuous function and the two‐dimensional asymptotic crack‐tip displacement fields are added to the finite element approximation to account for the crack using the notion of partition of unity. This enables the domain to be modelled by finite elements with no explicit meshing of the crack surfaces. Computational geometry issues associated with the representation of the crack and the enrichment of the finite element approximation are discussed. Stress intensity factors (SIFs) for planar three‐dimensional cracks are presented, which are found to be in good agreement with benchmark solutions. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
This paper contains a first systematic analysis of a posteriori estimation for finite element solutions of the Helmholtz equation. In this first part, it is shown that the standard a posteriori estimates, based only on local computations, severely underestimate the exact error for the classes of wave numbers and the types of meshes employed in engineering analysis. This underestimation can be explained by observing that the standard error estimators cannot detect one component of the error, the pollution error, which is very significant at high wave numbers. Here, a rigorous analysis is carried out on a one-dimensional model problem. The analytical results for the residual estimator are illustrated and further investigated by numerical evaluation both for a residual estimator and for the ZZ-estimator based on smoothening. In the second part, reliable a posteriori estimators of the pollution error will be constructed. © 1997 by John Wiley & Sons, Ltd.  相似文献   

13.
A new stress recovery procedure that provides accurate estimations of the discretization error for linear elastic fracture mechanic problems analyzed with the extended finite element method (XFEM) is presented. The procedure is an adaptation of the superconvergent patch recovery (SPR) technique for the XFEM framework. It is based on three fundamental aspects: (a) the use of a singular+smooth stress field decomposition technique involving the use of different recovery methods for each field: standard SPR for the smooth field and reconstruction of the recovered singular field using the stress intensity factor K for the singular field; (b) direct calculation of smoothed stresses at integration points using conjoint polynomial enhancement; and (c) assembly of patches with elements intersected by the crack using different stress interpolation polynomials at each side of the crack. The method was validated by testing it on problems with an exact solution in mode I, mode II, and mixed mode and on a problem without analytical solution. The results obtained showed the accuracy of the proposed error estimator. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
This study presents a general procedure of creating pure equilibrium tetrahedral finite elements for use under the elastostatic hypothesis. These pure equilibrium elements are of the Fraeijs de Veubeke type and the degree of the polynomial approximation functions of their internal stress field is the parameter generating this new elements family. The spurious kinematic modes (SKM), inherent in the equilibrium approach, are eliminated at the element level by converting each tetrahedron into a super‐element defined as an assembly of four tetrahedral primitive elements. A mathematical discussion on the number of SKM of the primitive elements as well as their elimination by the super‐element technique has been carried out. The development of first and second degree elements is presented here in detail and their efficiency in the frame of global error estimation by dual analysis is emphasized by two numerical applications. The main attribute of the error estimation by dual analysis is that it provides an upper bound on the global discretization error. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
The purpose of this work is to investigate the quality of the a posteriori error estimator based on the polynomial preserving recovery (PPR). The main tool in this investigation is the computer‐based theory. Also, a comparison is made between this estimator and the one based on the superconvergence patch recovery (SPR). The results of this comparison were found to be in favour of the estimator based on the PPR. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
We present an a posteriori error indicator for the mimetic finite difference approximation of elliptic problems in the mixed form. We show that this estimator is reliable and efficient with respect to an energy‐type error comprising both flux and pressure. Its performance is investigated by numerically solving the diffusion equation on computational domains with different shapes, different permeability tensors, and different types of computational meshes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
In this article, a study of residual based a posteriori error estimation is presented for the partition of unity finite element method (PUFEM) for three-dimensional (3D) transient heat diffusion problems. The proposed error estimate is independent of the heuristically selected enrichment functions and provides a useful and reliable upper bound for the discretization errors of the PUFEM solutions. Numerical results show that the presented error estimate efficiently captures the effect of h-refinement and q-refinement on the performance of PUFEM solutions. It also efficiently reflects the effect of ill-conditioning of the stiffness matrix that is typically experienced in the partition of unity based finite element methods. For a problem with a known exact solution, the error estimate is shown to capture the same solution trends as obtained by the classical L2 norm error. For problems with no known analytical solutions, the proposed estimate is shown to be used as a reliable and efficient tool to predict the numerical errors in the PUFEM solutions of 3D transient heat diffusion problems.  相似文献   

18.
This paper presents improvements to three‐dimensional crack propagation simulation capabilities of the generalized finite element method. In particular, it presents new update algorithms suitable for explicit crack surface representations and simulations in which the initial crack surfaces grow significantly in size (one order of magnitude or more). These simulations pose problems in regard to robust crack surface/front representation throughout the propagation analysis. The proposed techniques are appropriate for propagation of highly non‐convex crack fronts and simulations involving significantly different crack front speeds. Furthermore, the algorithms are able to handle computational difficulties arising from the coalescence of non‐planar crack surfaces and their interactions with domain boundaries. An approach based on moving least squares approximations is developed to handle highly non‐convex crack fronts after crack surface coalescence. Several numerical examples are provided, which illustrate the robustness and capabilities of the proposed approaches and some of its potential engineering applications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
We develop reduced basis approximations, rigorous a posteriori error bounds, and offline–online computational procedures for the accurate, fast, and reliable prediction of stress intensity factors or strain energy release rates for ‘Mode I’ linear elastic crack problems relevant to fracture mechanics. We demonstrate the efficiency and rigor of our numerical method in several examples. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
The miscible displacement of one incompressible fluid by another in a porous medium is governed by a system of two equations. One is an elliptic equation of the pressure and the other is a parabolic equation of the concentration of one of the fluids. Since the pressure appears in the concentration only through its velocity field, we choose a mixed finite element method to approximate the pressure equation and for the concentration we use the standard Galerkin method. We shall obtain an explicit a posteriori error estimator in L2(L2) for the semi‐discrete scheme applied to the non‐linear coupled system. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号