首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
A finite element model for linear‐elastic small deformation problems is presented. The formulation is based on a weighted residual that requires a priori the satisfaction of the kinematic equation. In this approach, an averaged strain‐displacement matrix is constructed for each node of the mesh by defining an appropriate patch of elements, yielding a smooth representation of strain and stress fields. Connections with traditional and similar procedure are explored. Linear quadrilateral four‐node and linear hexahedral eight‐node elements are derived. Various numerical tests show the accuracy and convergence properties of the proposed elements in comparison with extant finite elements and analytic solutions. Specific examples are also included to illustrate the ability to resist numerical locking in the incompressible limit and insensitive response in the presence of shape distortion. Furthermore, the numerical inf‐sup test is applied to a selection of problems to show the stability of the present formulation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
         下载免费PDF全文
A simple triangular solid shell element formulation is developed for efficient analysis of plates and shells undergoing finite rotations. The kinematics of the present solid shell element formulation is purely vectorial with only three translational degrees of freedom per node. Accordingly, the kinematics of deformation is free of the limitation of small angle increments, and thus the formulation allows large load increments in the analysis of finite rotation. An assumed strain field is carefully selected to alleviate the locking effect without triggering undesirable spurious kinematic modes. In addition, the curved surface of shell structures is modeled with flat facet elements to obviate the membrane locking effect. Various numerical examples demonstrate the efficiency and accuracy of the present element formulation for the analysis of plates and shells undergoing finite rotation. The present formulation is attractive in that only three points are needed for numerical integration over an element.  相似文献   

3.
4.
    
Isogeometric analysis has recently become very popular for the numerical modeling of structures and fluids. Among other potential features, advantages of using a non‐uniform rational B‐splines (NURBS)‐based isogeometric analysis over the traditional finite element method include the possibility of using higher‐order polynomials for the basis functions of the approximation space, which may be easily built on a recursive (hierarchical) fashion as well as higher convergence ratio. Nevertheless, NURBS‐based isogeometric analysis suffers from the same problems depicted by other methods when it comes to reproduce isochoric deformations, that is, it shows volumetric locking, especially for low‐order basis functions. Similar remedies as those that have been proposed for the finite element method may be appropriate for integration in the NURBS‐based isogeometric analysis and some have already been tried with success. In this work, the analysis of the underlying space of incompressible deformations of a NURBS‐based isogeometric approximation is performed with the main objective of understanding the likelihood of volumetric locking. As a remedy, the enhanced assumed strain methodology is blended with the NURBS‐based isogeometric analysis to alleviate the volumetric locking associated with incompressible deformations. The solution includes a stabilization term derived directly from a penalized form of the classical Veubeke–Hu–Washizu three‐field variational principle. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
In the present contribution we extend a previously proposed so‐called solid–shell concept which incorporates only displacement degrees of freedom to the simulation of large elastic and large elastoplastic deformations of shells. Therefore, the modifications necessary for hyper‐elastic or elastoplastic material laws are discussed. These modifications concern the right Cauchy–Green tensor for large elastic deformations, respectively, the deformation gradient for elastoplasticity which then are consistent to the modified Green–Lagrange strains that are necessary for transverse shear and membrane locking free solid–shell element formulations. However, in addition to the locking mentioned above especially in the range of plasticity incompressibility locking becomes important. Thus, the second major aspect of this contribution is the discussion of several ways to avoid incompressibility locking also including the investigation of eigenmodes. Finally, a selective reduced integration scheme with reduced integration for the volumetric term is employed and described in detail, although it is limited to material laws which allow the decomposition into a volumetric and a deviatoric part. Some numerical examples show the range of application for the proposed elements. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
    
An assumed‐strain finite element technique for non‐linear finite deformation is presented. The weighted‐residual method enforces weakly the balance equation with the natural boundary condition and also the kinematic equation that links the elementwise and the assumed‐deformation gradient. Assumed gradient operators are derived via nodal integration from the kinematic‐weighted residual. A variety of finite element shapes fits the derived framework: four‐node tetrahedra, eight‐, 27‐, and 64‐node hexahedra are presented here. Since the assumed‐deformation gradients are expressed entirely in terms of the nodal displacements, the degrees of freedom are only the primitive variables (displacements at the nodes). The formulation allows for general anisotropic materials and no volumetric/deviatoric split is required. The consistent tangent operator is inexpensive and symmetric. Furthermore, the material update and the tangent moduli computation are carried out exactly as for classical displacement‐based models; the only deviation is the consistent use of the assumed‐deformation gradient in place of the displacement‐derived deformation gradient. Examples illustrate the performance with respect to the ability of the present technique to resist volumetric locking. A constraint count can partially explain the insensitivity of the resulting finite element models to locking in the incompressible limit. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
    
In this paper, a novel reduced integration eight‐node solid‐shell finite element formulation with hourglass stabilization is proposed. The enhanced assumed strain method is adopted to eliminate the well‐known volumetric and Poisson thickness locking phenomena with only one internal variable required. In order to alleviate the transverse shear and trapezoidal locking and correct rank deficiency simultaneously, the assumed natural strain method is implemented in conjunction with the Taylor expansion of the inverse Jacobian matrix. The projection of the hourglass strain‐displacement matrix and reconstruction of its transverse shear components are further employed to avoid excessive hourglass stiffness. The proposed solid‐shell element formulation successfully passes both the membrane and bending patch tests. Several typical examples are presented to demonstrate the excellent performance and extensive applicability of the proposed element. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
9.
10.
In this paper a new reduced integration eight‐node solid‐shell finite element is presented. The enhanced assumed strain (EAS) concept based on the Hu–Washizu variational principle requires only one EAS degree‐of‐freedom to cure volumetric and Poisson thickness locking. One key point of the derivation is the Taylor expansion of the inverse Jacobian with respect to the element center, which closely approximates the element shape and allows us to implement the assumed natural strain (ANS) concept to eliminate the curvature thickness and the transverse shear locking. The second crucial point is a combined Taylor expansion of the compatible strain with respect to the center of the element and the normal through the element center leading to an efficient and locking‐free hourglass stabilization without rank deficiency. Hence, the element requires only a single integration point in the shell plane and at least two integration points in thickness direction. The formulation fulfills both the membrane and the bending patch test exactly, which has, to the authors' knowledge, not yet been achieved for reduced integration eight‐node solid‐shell elements in the literature. Owing to the three‐dimensional modeling of the structure, fully three‐dimensional material models can be implemented without additional assumptions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
    
An assumed‐strain finite element technique is presented for linear, elastic small‐deformation models. Weighted residual method (reminiscent of the strain–displacement functional) is used to weakly enforce the balance equation with the natural boundary condition and the kinematic equation (the strain–displacement relationship). A priori satisfaction of the kinematic weighted residual serves as a condition from which strain–displacement operators are derived via nodal integration. A variety of element shapes is treated: linear triangles, quadrilaterals, tetrahedra, hexahedra, and quadratic (six‐node) triangles and (27‐node) hexahedra. The degrees of freedom are only the primitive variables (displacements at the nodes). The formulation allows for general anisotropic materials. A straightforward constraint count can partially explain the insensitivity of the resulting finite element models to locking in the incompressible limit. Furthermore, the numerical inf–sup test is applied in select problems and several variants of the proposed formulations (linear triangles, quadrilaterals, tetrahedra, hexahedra, and 27‐node hexahedra) pass the test. Examples are used to illustrate the performance with respect to sensitivity to shape distortion and the ability to resist volumetric locking. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
    
Eric Li  C.C. Chang  Z.C. He  Zhongpu Zhang  Q. Li 《工程优选》2016,48(12):2064-2089
It is well known that the finite element method (FEM) suffers severely from the volumetric locking problem for incompressible materials in topology optimization owing to its numerical ‘overly stiff’ property. In this article, two typical smoothed FEMs with a certain softened effect, namely the node-based smoothed finite element method (NS-FEM) and the cell-based smoothed finite element method, are formulated to model the compressible and incompressible materials for topology optimization. Numerical examples have demonstrated that the NS-FEM with an ‘overly soft’ property is fairly effective in tackling the volumetric locking problem in topology optimization when both compressible and incompressible materials are involved.  相似文献   

13.
    
In Part I of the paper, a hybrid‐stress‐assumed natural strain eight‐node solid‐shell element immune to shear, membrane, trapezoidal, thickness and dilatational lockings has been developed. Moreover, the element computational cost is reduced by enforcing admissible sparsity in the flexibility matrix. In this part of the paper, the solid‐shell element is generalized to a piezoelectric solid‐shell element. Using the two solid‐shell elements, smart structures with segmented piezoelectric sensors and actuators can be conveniently modelled. A number of problems are studied and comparisons with other ad hoc element models for smart structure modelling are presented. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper we address the extension of a recently proposed reduced integration eight‐node solid‐shell finite element to large deformations. The element requires only one integration point within the shell plane and at least two integration points over the thickness. The possibility to choose arbitrarily many Gauss points over the shell thickness enables a realistic and efficient modeling of the non‐linear material behavior. Only one enhanced degree‐of‐freedom is needed to avoid volumetric and Poisson thickness locking. One key point of the formulation is the Taylor expansion of the inverse Jacobian matrix with respect to the element center leading to a very accurate modeling of arbitrary element shapes. The transverse shear and curvature thickness locking are cured by means of the assumed natural strain concept. Further crucial points are the Taylor expansion of the compatible cartesian strain with respect to the center of the element as well as the Taylor expansion of the second Piola–Kirchhoff stress tensor with respect to the normal through the center of the element. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
    
In the recent years, solid‐shell finite element models which possess no rotational degrees of freedom and applicable to thin plate/shell analyses have attracted considerable attention. Development of these elements are not straightforward. Shear, membrane, trapezoidal, thickness and dilatational lockings must been visioned. In this part of this paper, a novel eight‐node solid‐shell element is proposed. To resolve the shear and trapezoidal lockings, the assumed natural strain (ANS) method is resorted to. The hybrid‐stress formulation is employed to rectify the thickness and dilatational locking. The element is computationally more efficient than the conventional hybrid elements by adopting orthogonal‐assumed stress modes and enforcing admissible sparsity in the flexibility matrix. Popular benchmark tests are exercised to illustrate the efficacy of the elements. In Part II of the paper, the element will be generalized for smart structure modelling by including the piezoelectric effect. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

16.
    
The degenerated approach for shell elements of Ahmad and co‐workers is revisited in this paper. To avoid transverse shear locking effects in four‐node bilinear elements, an alternative formulation based on the enhanced assumed strain (EAS) method of Simo and Rifai is proposed directed towards the transverse shear terms of the strain field. In the first part of the work the analysis of the null transverse shear strain subspace for the degenerated element and also for the selective reduced integration (SRI) and assumed natural strain (ANS) formulations is carried out. Locking effects are then justified by the inability of the null transverse shear strain subspace, implicitly defined by a given finite element, to properly reproduce the required displacement patterns. Illustrating the proposed approach, a remarkably simple single‐element test is described where ANS formulation fails to converge to the correct results, being characterized by the same performance as the degenerated shell element. The adequate enhancement of the null transverse shear strain subspace is provided by the EAS method, enforcing Kirchhoff hypothesis for low thickness values and leading to a framework for the development of shear‐locking‐free shell elements. Numerical linear elastic tests show improved results obtained with the proposed formulation. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
    
A formulation for 36‐DOF assumed strain triangular solid shell element is developed for efficient analysis of plates and shells undergoing finite rotations. Higher order deformation modes described by the bubble function displacements are added to the assumed displacement field. The assumed strain field is carefully selected to alleviate locking effect. The resulting element shows little effect of membrane locking as well as shear locking, hence, it allows modelling of curved shell structures with curved elements. The kinematics of the present formulation is purely vectorial with only three translational degrees of freedom per node. Accordingly, the present element is free of small angle assumptions, and thus it allows large load increments in the geometrically non‐linear analysis. Various numerical examples demonstrate the validity and effectiveness of the present formulation. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
    
Compared to the large number of curved quadrilateral degenerated‐ and solid‐shell elements, there are only a very few curved triangular degenerated‐ and solid‐shell elements. Based on the assumed natural strain sampling scheme previously developed for a quadratic degenerated‐shell element for linear analysis, this paper devises geometric non‐linear six‐node degenerated‐shell and twelve‐node solid‐shell elements. Both elements can be curved and are only equipped with the standard nodal d.o.f.s. Careful consideration has been exercised to circumvent various locking phenomena that plague degenerated‐ and solid‐shell elements. Numerical examples are presented to illustrate their efficacy. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
    
Due to the very non‐linear behaviour of thin shells under collapse, numerical simulations are subject to challenges. Shell finite elements are attractive in these simulations. Rotational degrees of freedom do, however, complicate the solution. In the present study a co‐rotated formulation is employed. The deformation of the shell is decomposed in to a contribution from large rigid body rotation and a strain producing term. A triangular assumed strain shell finite element is used. Hence, a high performance elastic element is combined with the co‐rotated formulation. In the co‐rotated co‐ordinate system the plasticity is accounted for by a simplifyed Ilyushin stress resultant yield surface. The stress update is determined from the backward Euler difference, and a consistent geometrical and material tangent stiffness is derived. Comparison with other published analysis results show that the present formulation gives acceptable accuracy. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

20.
    
Accuracy and efficiency are the main features expected in finite element method. In the field of low‐order formulations, the treatment of locking phenomena is crucial to prevent poor results. For three‐dimensional analysis, the development of efficient and accurate eight‐node solid‐shell finite elements has been the principal goal of a number of recent published works. When modelling thin‐ and thick‐walled applications, the well‐known transverse shear and volumetric locking phenomena should be conveniently circumvented. In this work, the enhanced assumed strain method and a reduced in‐plane integration scheme are combined to produce a new eight‐node solid‐shell element, accommodating the use of any number of integration points along thickness direction. Furthermore, a physical stabilization procedure is employed in order to correct the element's rank deficiency. Several factors contribute to the high computational efficiency of the formulation, namely: (i) the use of only one internal variable per element for the enhanced part of the strain field; (ii) the reduced integration scheme; (iii) the prevention of using multiple elements' layers along thickness, which can be simply replaced by any number of integration points within a single element layer. Implementation guidelines and numerical results confirm the robustness and efficiency of the proposed approach when compared to conventional elements well‐established in the literature. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号