首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, our goal is to obtain lower density of ethylene‐vinyl acetate copolymer (EVA)/ethylene‐1‐butene copolymer (EtBC) foams without sacrificing mechanical properties. For this purpose EVA/EtBC/organoclay (Cloisite 15A, Closite 30B) nanocomposite foams were prepared. To investigate the effect of compatibilizer on the dispersion state of organoclay in cellular foam structure and mechanical properties of the EVA/EtBC/organoclay foams composites were prepared with and without maleic anhydride grafted EtBC (EtBC‐g‐MAH). The dispersion of organoclay in EVA/EtBC/organocaly foams was investigated by X‐ray diffraction and transmission electron microscopy. The EVA/EtBC nanocomposite foamswith the compatibilzer, especially EVA/EtBC/Cloisite 15A/EtBC‐g‐MAH foams displayed more uniform dispersion of organoclay than EVA/EtBC nanocomposite foams without the compatibilzer. As a result, EVA/EtBC/Cloisite 15A/EtBC‐g‐MAH foams have the smallest average cell size and highest 100% tensile modulus followed by EVA/EtBC/Cloisite 30B/EtBC‐g‐MAH foams. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 3879–3885, 2007  相似文献   

2.
In this study an attempt was made to obtain lower density of ethylene‐vinyl acetate copolymer (EVA)/ethylene‐1‐butene copolymer (EtBC) foams without sacrificing mechanical properties. For this purpose EVA/EtBC/clay nanocomposite foams were prepared. To investigate the effect of compatibilizer and silane coupling agent on the physical properties of the EVA/EtBC/clay foams, maleic anhydride‐grafted EtBC (EtBC‐g‐MAH) and the most commonly used silane coupling agent in rubbers, bis(3‐triethoxysilylpropyl) tetrasulfide (Si‐69) were used in the preparation of EVA/EtBC/clay nanocomposite foams. The formation of EVA/EtBC/clay nanocomposite foams was supported by X‐ray diffraction results. And, using a compatibilzer and silane coupling agent, lower density of EVA/EtBC/clay nanocomposite foams were obtained without sacrificing mechanical properties except compression set. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3259–3265, 2006  相似文献   

3.
The main objective of this study is to obtain ethylene‐vinyl acetate copolymer (EVA)/multi‐walled carbon nanotube (MWCNT)/organoclay foams with improved mechanical properties without increase of their density, compared with EVA/MWCNT foams. MWCNT content was fixed at 5 phr in this study. To achieve the objective, EVA was melt‐mixed with MWCNTs and organoclays in a bench kneader. And the obtained EVA/MWCNT/organoclay mixtures were mixed with chemical blowing agent and cross‐linking agent in a two roll‐mill. After being mixed in a two roll‐mill, the mixtures were put in a mold and the foams were obtained by compression‐molding. The effect of organoclay content on the mechanical properties and surface resistivity of EVA/MWCNT (5 phr)/organoclay foams was investigated. The addition of 1 phr organoclays to the EVA/MWCNT (5 phr) foams resulted in the improvement of tensile strength, 100% tensile modulus, tear strength, and compression set without increase of the density. However, further increase in content of organoclay (3 phr) leaded to a deterioration of mechanical properties. Therefore, determining the optimal content of organoclay was very important in order to achieve the main objective of this study. POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers  相似文献   

4.
Three different surface modifiers, octadecyl trimethyl ammonium (ODTMA), octadecyl primary ammonium (ODPA), and decanediamine (DDA) were used to modify Na+? montmorillonite (MMT), and the resultant organoclays were coded as ODTMA‐MMT, ODPA‐MMT, DDA‐MMT, respectively. Rigid PU foams/organoclay composites were prepared by directly using organoclay as the blowing agent without the addition of water. Investigation shows that the morphology of the nanocomposites is greatly dependent on the surface modifiers of clay used in the composites. In detail, DDA‐MMT is partially exfoliated in the PU matrix with the smallest cell size, while two others are intercalated in the PU matrices with smaller cell sizes. The sequence of their cell sizes is pristine PU foams > rigid PU foams/ODTMA‐MMT > rigid PU foams/ODPA‐MMT > rigid PU foams/DDA‐MMT, and the average cell size of rigid PU foams/DDA‐MMT composites decreases evidently from 0.30 to 0.07 mm. Moreover, all rigid PU foams/organoclay composites show remarkable enhanced compressive and tensile strengths as well as dynamic properties than those of PU foams, and the enhancement degree coincides well with the relative extent of internal hydrogen bonding of materials and gallery spacing of organoclay. For example, in the case of rigid PU foams/DDA‐MMT composite, 214% increase in compressive strength and 148% increase in tensile strength compared with those of pure PU foams were observed. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

5.
In this study, montmorillonite (MMT)/poly(?‐caprolactone)‐based polyurethane cationomer (MMT/PCL‐PUC) nanocomposites were prepared and their mechanical properties, thermal stability, and biodegradability were investigated. PCL‐PUC has 3 mol % of quaternary ammonium groups in the main chain. The MMT was successfully exfoliated and well dispersed in the PCL‐PUC matrix for up to 7 wt % of MMT. The 3 mol % of quaternary ammonium groups facilitated exfoliation of MMT. The 1 wt % MMT/PCL‐PUC nanocomposites showed enhanced tensile properties relative to the pure PCL‐PU. As the MMT content increased in the MMT/PCL‐PUC nanocomposites, the degree of microphase separation of PCL‐PUC decreased because of the strong interactions between the PCL‐PUC chains and the exfoliated MMT layers. This resulted in an increase in the Young's modulus and a decrease in the elongation at break and maximum stress of the MMT/PCL‐PUC nanocomposites. Biodegradability of the MMT/PCL‐PUC nanocomposites was dramatically increased with increasing content of MMT, likely because of the less phase‐separated morphology of MMT/PCL‐PUC. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
The main objective of this study was to synthesize and characterize the properties of ethylene–propylene–diene terpolymer (EPDM)/clay nanocomposites. Pristine clay, sodium montmorillonite (Na+–MMT), was intercalated with hexadecyl ammonium ion to form modified organoclay (16Me–MMT) and the effect of intercalation toward the change in interlayer spacing of the silicate layers was studied by X‐ray diffraction, which showed that the increase in interlayer spacing in Na+–MMT by 0.61 nm is attributed to the intercalation of hexadecyl ammonium ion within the clay layers. In the case of EPDM/16Me–MMT nanocomposites, the basal reflection peak was shifted toward a higher angle. However, gallery height remained more or less the same for different EPDM nanocomposites with organoclay content up to 8 wt %. The nanostructure of EPDM/clay composites was characterized by transmission electron microscopy, which established the coexistence of intercalated and exfoliated clay layers with an average layer thickness in the nanometer range within the EPDM matrix. The significant improvement in thermal stability and mechanical properties reflects the high‐performance nanocomposite formation. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2429–2436, 2004  相似文献   

7.
In this article, the combination of silicone rubber (SR) elastomer with synthetic iron montmorillonite (Fe‐MMT) to form a kind of new flame‐retardant system based on an ethylene–vinyl acetate (EVA) copolymer is first reported. Also, the flame retardancy of the EVA/SR/Fe‐MMT hybrid are compared with that of EVA/SR/natural sodium montmorillonite. The structures of the nanocomposites were characterized with X‐ray diffraction and transmission electron microscopy. Cone calorimeter tests and thermogravimetric analysis were used to evaluate the flame‐retardant properties and thermal stability of the composites, respectively. In addition, tensile tests were carried out with a universal testing machine, and the morphology of the fracture surface was observed with environmental scanning electron microscopy. We found that SR/organophilic montmorillonite (Fe‐OMT) was more effective in reducing the primary peak heat release rate of the nanocomposite, and the EVA/SR/Fe‐OMT hybrid had a higher thermal stability in the deacetylated polymer than EVA/SR/sodium organophilic montmorillonite. Moreover, the exfoliated EVA/SR/Fe‐OMT nanocomposite displayed excellent mechanical properties because of a better dispersion of Fe‐OMT in the polymer matrix, and a possible mechanism is discussed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
Functional copolymer/organo‐silicate [N,N′‐dimethyldodecyl ammonium cation surface modified montmorillonite (MMT)] layered nanocomposites have been synthesized by interlamellar complex‐radical copolymerization of preintercalated maleic anhydride (MA)/ organo‐MMT complex as a ‘nano‐reactor’ with n‐butyl methacrylate (BMA) as an internal plasticization comonomer in the presence of radical initiator. Synthesized copolymers and their nanocomposites were investigated by dynamic mechanic analysis, X‐ray diffraction, SEM, and TEM methods. It was found that nanocomposite dynamic mechanical properties strongly depend on the force of interfacial MA … organo‐MMT complex formation and the amount of flexible n‐butyl ester linkages. An increase in both of these parameters leads to enhanced intercalation and exfoliation in situ processes of copolymer chains and the formation of hybrid nanocomposites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
Nanostructure of poly(ethylene‐co‐vinyl acetate)/organically modified montmorillonite (MMT; EVA/organoclay) nanocomposites prepared by melt intercalation process was investigated using X‐ray diffraction (XRD) and transmission electron microscopy (TEM). Three kinds of organoclays were used to see their influences on the nanostructure of the EVA hybrids. The effects of the polar interactions between the polymer and the silicate layers of organoclays were also investigated by grafting maleic anhydride onto EVA. It was found that the strong polar interactions between the polymer and the silicate layers of organoclays are critical to the formation of polymer‐layered silicate nanocomposites. The results also showed that increasing the mixing temperature was unfavorable to improve the dispersion of organoclays in the EVA matrix. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1901–1909, 2003  相似文献   

10.
Summary: Hydrogenated acrylonitrile butadiene rubber (HNBR) was melt compounded with montmorillonite (MMT) and organophilic modified MMTs prior to sulfur curing. In contrast to the micro‐composite formation resulting from the compounding of the HNBR and pristine MMT, the modified MMTs (i.e., octadecylamine: MMT‐ODA, octadecyltrimethylamine: MMT‐ODTMA, methyltallow‐bis(2‐hydroxyethyl) quaternary ammonium: MMT‐MTH intercalants) produced nanocomposites. It was found that the organoclay with primary amine intercalant (cf. MMT‐ODA) gave confined structures along with the exfoliated/intercalated structures. This was traced to its reactivity with the curatives. By contrast, the organoclays containing less reactive quaternary ammonium compounds (cf. MMT‐ODTMA, MMT‐MTH) were exfoliated and intercalated based on X‐ray diffraction (XRD) and transmission electron microscopy (TEM) results. The hydroxyl functional groups of the MMT‐MTH supported the clay dispersion. The better adhesion between MMT‐MTH and HNBR was explained by hydrogen bonding between the hydroxyl groups of the intercalant and the acrylonitrile group of the HNBR matrix. This HNBR/MMT‐MTH nanocomposite showed the best mechanical properties as verified by tensile mechanical tests and dynamic mechanical thermal analysis (DMTA). The high tensile strength along with the high elongation at break for the rubber nanocomposites were attributed to the ability of the ‘clay network’ to dissipate the input energy upon uniaxial loading.

Scheme of failure development in rubber/organoclay mixes with poor (a) and good (b) dispersion of the clay layers.  相似文献   


11.
Propylene random copolymer (PPR)/styrene‐ethylene‐butylene‐styrene block copolymer (SEBS)/compatibilizer/organic‐montmorillonite (OMMT) quaternary nanocomposites and PPR/compatibilizer/OMMT ternary nanocomposites were prepared via two‐stage melt blending and influences of compatibilizers, maleic anhydride (MA) grafted styrene‐ethylene‐butylene‐styrene copolymer (SEBS‐g‐MA), poly(octene‐co‐ethylene) (POE‐g‐MA), or propylene block copolymers (PPB‐g‐MA), on rheology and mechanical properties of the nanocomposites were investigated. The results of X‐ray diffraction measurement and transmission electron microscopy observation showed that OMMT layers were mainly intercalated in the nanocomposites except for the mainly exfoliated structure in the quaternary nanocomposites using POE‐g‐MA as compatibilizer. The nanocomposites exhibited pseudo‐solid like viscoelasticity in low frequencies and shear‐thinning in high shear rates. As far as OMMT dispersion was concerned, POE‐g‐MA was superior to SEBS‐g‐MA and PPB‐g‐MA, which gives rise to the highest viscosities in both the ternary and quaternary nanocomposites. The quaternary nanocomposites containing POE‐g‐MA were endowed with balanced toughness and rigidity. It was suggested that a suitable combination of compatibilizer and SEBS was an essentially important factor for adjusting the OMMT dispersion and distribution, the rheological and mechanical performances of the nanocomposites. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

12.
Ethylene‐vinyl acetate copolymer (EVA)/montmorillonite MMT nanocomposites have been prepared by using different methods: one is from the organophilic montmorillonite (OMT) and the other is from the pristine MMT and reactive compatibilizer hexadecyl trimethyl ammonium bromide (C16). In this study, different kneaders were used (twin‐screw extruder and twin‐roll mill) to prepare nanocomposites. The nanocomposite structures are evidenced by the X‐ray diffraction (XRD) and high‐resolution electronic microscope (HREM). The thermal properties of the nanocomposites were investigated by thermogravimetric analysis (TGA). Moreover, the tensile tests were carried out with a Universal testing machine DCS‐5000. It is shown that different methods and organophilic montmorillonite have influence on EVA/MMT nanocomposites.© 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2416–2421, 2004  相似文献   

13.
The main objective of this study is to obtain ethylene‐vinyl acetate copolymer (EVA)/wood‐flour foams with low density (< 0.2 g/cm3) using chemical blowing agent. Stearic acid was used as a compatibilizer to improve not only the compatibility between wood‐flour and EVA but also the compatibility between moisture and EVA in this study. The effects of wood‐flour content on the density and mechanical properties of EVA/wood‐flour foams were studied. Also, the effects of content of stearic acid on the cell morphology of EVA/wood‐flour foams were investigated. The shape of EVA/wood‐flour foams with 20% wood‐flour content becomes more uniform with increasing content of stearic acid. The most stabilized shape of the foams is obtained with 5 wt % stearic acid content. The density of EVA/wood‐flour foams with 20% wood‐flour and 5 wt % stearic acid is 0.11 g/cm3. With increasing content of stearic acid, more gas remains in the EVA matrix and consequently, average cell size and density increase. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40894.  相似文献   

14.
A study is presented on the morphological effects caused by the nanoclay organic modifier and the nanoclay concentration. This was made under previously determined compatibility conditions of heterophasic polypropylene copolymers (PP‐EP)/poly(ethylene vinyl acetate) (EVA)/organoclay nanocomposites. The nanocomposites were prepared using the fluidity of the EVA phase to disperse the nanoclay platelets. Therefore, no additional compatibilizer was used to achieve the clay dispersion. Two organoclays were used with different characteristics and polarity of the substituent groups. Transmission electron microscopy and X‐ray diffraction results first indicated that two hydrogenated tallow modifiers are more effective than one to enhance nanoclay exfoliation. Thermogravimetric studies indicated a low probability of thermal degradation of the nanoclay modifiers and as a consequence of their effect on the layer–layer exfoliation. Molecular simulations were made with the purpose to study additional factors affecting exfoliation. The introduction of nanoclay, within the compatibility conditions of the PP‐EP/EVA system, was also studied. It was determined that the system preserved its original morphology and that the silicate layers were hosted by the EVA domains. The crystallization characteristics of the PP‐EP/EVA mixtures indicated a gradual evolution of the overall crystalline structures depending on the EVA content. In the case of the ternary nanocomposites PP‐EP/EVA/nanoclay, the β crystalline structure was partially formed, although it decreased with increasing nanoclay content. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
A uniaxial tensile test was performed for polycarbonate (PC)/high‐density polyethylene (HDPE)/ethylene–vinyl acetate copolymer (EVA) blends with a fixed EVA content but various PC contents. The double‐yielding phenomenon and its composition dependence, as observed in the PC/HDPE blend, were again detected. EVA did not serve as a successful compatibilizer of PC and HDPE in the PC/HDPE/EVA blend. The incorporation of EVA resulted in a larger size and a more irregular shape of the PC fibers, as indicated in the scanning electron microscope observations; this, consequently, produced a higher serious stress concentration in the blend. This more complicated and instable morphology produced different double‐yielding behaviors in the PC/HDPE/EVA blends compared with the binary one. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

16.
Polyether‐ and polyester‐based thermoplastic polyurethane (TPU) nanocomposites containing the montmorillonite modified with quaternary ammonium salts having a relatively long hydroxyalkyl branch (MMT‐OH) were prepared via solution mixing. Quaternary ammonium salts with dimethyl, octyl, hydroxyundecyl branches were synthesized by the addition reaction of dimethyloctylamine and 11‐bromo‐1‐undecanol and were used for the preparation of MMT‐OH. In this MMT‐OH clay, hydroxyl groups are located at the outer end of the relatively long undecyl branch, which may make the hydroxyl groups more exposed to the matrix polymers compared to the clays with the modifiers having shorter hydroxyalkyl chain such as C30B. Actually, more hydroxyl groups in MMT‐OH's are thought to be exposed outside the modified clay, since MMT‐OH's were observed to be somewhat dispersed in water, while clays with shorter alkyl chains were not. From XRD and TEM results, the silicate layers of MMT‐OH were shown to be very well dispersed in ether‐TPU and ester‐TPU nanocomposites prepared from dimethyl acetamide solution. In the case of ester‐TPU nanocomposites, much better clay dispersion was observed for nanocomposites containing MMT‐OH than the ones with C30B in the TEM images. The tensile properties measurement showed the similar trend. Although MMT‐OH has only one hydroxyl group while C30B has two, above results of better tensile properties and water dispersibility of MMT‐OH than C30B having two hydroxyls indicate that the position of hydroxyls may be a important factor in determining the properties of TPU/clay nanocomposites. Fourier transform infrared spectroscopy analyses showed that the long hydroxyalkyl chain modifiers may provide more hydrogen bonding sites than short hydroxyalkyl chain modifiers. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

17.
Organic–inorganic hybrid poly(styrene‐co‐butyl acrylate)/organically modified montmorillonite (PSBA/organo‐MMT) latex particles have been prepared by in situ emulsion polymerization. The effects of modifier variety and the level of organo‐MMT have been investigated on the basis of the characteristics and mechanical properties of the resulting hybrid emulsion polymers. Although the more hydrophilic intercalated organic modifiers increased the latex particle size, the hydrophobic ones decreased the particle size. A more heterogeneous copolymer chain intercalation was seen by widespread XRD reflection as the organo‐MMT (organoclay) level increases. The tapping mode atomic force microscopy (AFM) and transmission electron microscopy (TEM) were used to determine the dispersion state of organoclay particles inside the nanocomposite copolymer films. Dynamic mechanical thermal analysis (DMTA) showed that adding the organoclay to the copolymer decreased the maximum loss tangent (tanδ) value and caused the shift to a lower temperature. Interestingly, the incorporation of organoclay decreased the glass storage modulus of the copolymer, while increased the rubbery storage modulus to some extent. In addition, a standard indenter for the nanoscratching of copolymer nanocomposite films was used under low applied loads of 150 and 250 μN. The nanoscratch results showed that incorporation of a 3 wt % hydrophobic organoclay, e.g., Closite15A, in the copolymer matrix enhanced considerably the near‐surface hardness and grooving resistance of the nanocomposite film at room temperature. In fact, copolymer nanocomposite films with higher near‐surface hardness and tanδ curve broadening exhibited more nanoscratch resistance through a specific variety of viscoelastic deformation, which did not create a bigger groove. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
Natural rubber (NR)/poly(ethylene‐co‐vinyl acetate) (EVA) blend–clay nanocomposites were prepared and characterized. The blend nanocomposites were prepared through the melt mixing of NR/EVA in a ratio of 40/60 with various amounts of organoclay with an internal mixer followed by compression molding. X‐ray diffraction patterns revealed that the nanocomposites formed were intercalated. The formation of the intercalated nanocomposites was also indicated by transmission electron microscopy. Scanning electron microscopy, used to study the fractured surface morphology, showed that the distribution of the organoclay in the polymer matrix was homogeneous. The tensile modulus of the nanocomposites increased with an increase in the organoclay content. However, an increase in the organoclay content up to 5 phr did not affect the tensile strength, but the organoclay reduced this property when it was increased further. This study also indicated that a low silicate content dispersed in the blend matrix was capable of increasing the storage modulus of the material. The addition of the organoclay also increased the decomposition temperature of the NR/EVA blends. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 353–362, 2006  相似文献   

19.
The effect of vinyl acetat (VA) on the morphological, thermal stability, and mechanical properties of heterophasic polypropylene–(ethylene‐propylene) copolymer (PP–EP)/poly(ethylene vinyl acetate) (EVA)/organoclay nanocomposites was studied. Tailored organoclay C20A was selected to enhance the exfoliation of the clay platelets. Depending on the VA content, there were two morphological organoclay populations in the systems. Both populations were directly observed by scanning transmission electron microscopy and measured by wide‐angle X‐ray diffraction and small‐angle X‐ray scattering. The content of VA in EVA originated spherical and elongated morphologies in the resultant nanocomposites. High‐VA content led to a better intercalation of the organoclay platelets. Measurement of thermal properties suggested that higher VA decreases thermal stability in samples both with and without organoclay, although nanocomposites had higher thermal stability than samples without clay. The storage modulus increased both with nanoclay and VA content. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
Ethylene vinyl acetate copolymer (EVA) and monmorillonite (MMT) nanocomposites have been investigated as a function of vinyl acetate content and molecular weight of EVA and types of substituted alkyl ammonium of MMT. It is found that vinyl acetate content and type of substituted alkyl ammonium are important factors for the intercalation behaviour of MMT in MMT/EVA nanocomposite. Maleic anhydride grafted high‐density polyethylene was used as a compatibilizer to improve the intercalation behaviour of MMT. X‐ray diffraction and transmission electron microscopy were used to characterize the intercalation/exfoliation behaviour, and mechanical properties were measured. © 2003 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号