首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The water bamboo husk is one of major agricultural wastes in Taiwan. In this study, the fiber and powder obtained from the water bamboo husk were chemically modified by coupling agents. Furthermore, the modified fiber and powder were added to the biodegradable polymer poly(butylene succinate) (PBS) separately, to form novel fiber‐reinforced composites. Morphologies, mechanical properties, and heat resistance of these water bamboo husk‐reinforced composites were investigated. The results indicate that the fibers modified by coupling agents exhibited better compatibility with the polymer matrixes than did the untreated fibers. Moreover, it is found that the thermal properties were improved as plant fiber was incorporated to those polymers. Furthermore, the mechanical properties were also increased with the addition of coupling agent‐treated fiber. On the other hand, it is found that the homogeneity of untreated powder‐containing samples is better than that of untreated fiber‐containing samples. Moreover, the results reveal that the powders modified with coupling agents were not effective in improving the mechanical properties of the reinforced PBS. This is due to the bulky structure of lignin leading to a smaller reaction ratio with the coupling agents. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 188–199, 2006  相似文献   

2.
The aim of this study was to develop fiber reinforced polylactic acid (PLA) composites via twin screw extrusion with the addition of a compatibilizer. Initial studies were performed to establish the optimum initiator percentage in terms of grafting efficiency between PLA and maleic anhydride (MA). Results show that PLA MA 7 obtained the highest level of grafting efficiency. Subsequent viscometric titration analysis on the compatibilized and uncompatibilized PLA composites showed an increase in the interfacial adhesion for the compatibilized PLA composites. Tensile and flexural properties also confirmed this increase in interfacial adhesion for the compatibilized composites, where the mechanical properties improved considerably, compared with virgin PLA and uncompatibilized composites. Results showed that the mechanical properties increase as PLA‐g‐MA loading increased. Finally, the rate of compostability of compatibilized composites decreased with the addition of PLA‐g‐MA. This was attributed to a lack of water absorption due to the bonding of hydroxyl groups on the fibers surface with MA. POLYM. COMPOS., 35:1792–1797, 2014. © 2014 Society of Plastics Engineers  相似文献   

3.
以PLA、稻壳粉为原材料,分别加入玻璃纤维、乙烯-辛烯共聚物(POE)、碳酸钙为增韧剂进行增韧改性,以模压成型的方法制备了PLA/稻壳木塑复合材料,结合力学性能、吸水性能、X射线衍射(XRD)分析和对材料表面的显微观察研究了不同种类及含量的增韧剂对木塑复合材料力学性能的影响。结果表明,在玻璃纤维含量为20%的时候,PLA/稻壳木塑复合材料的增韧效果较好,其洛氏硬度值达68,其拉伸强度达到6.16 MPa,弯曲强度达到15.41 MPa,冲击强度为144.40 kJ/m2,但吸水性能显著提高,约为不添加增韧剂时的1.5倍;在POE含量为20%的时候,PLA/稻壳木塑复合材料吸水性降低效果最为显著,60 h浸泡实验其吸水率比不添加POE小10%。XRD分析及显微分析表明,除CaCO3自身结构影响外,添加不同增韧剂均未使PLA/稻壳复合材料形成新的晶型结构,加入POE和CaCO3的增韧效果不明显,是因为两种物质颗粒孤立存在于基体中,未形成相互搭连的网格结构。  相似文献   

4.
This study aimed to investigate the effects of blend composition on packaging‐related properties of poly(lactic acid) (PLA) and low density polyethylene (LDPE) blown films. Blend films with PLA contents of 5–20 wt% were produced and compared. Scanning electron micrographs of cross‐sectional cryofractured surfaces of the blend films revealed that in situ fibre‐reinforced composites were obtained. Viscosity ratio of the polymer components of ca 1 confirmed that fibre formation was favourable for this blend system. PLA microdomains were dispersed throughout the film in forms of long fibres (length‐to‐diameter ratio > 100) and ribbons. The number of fibres and ribbons increased with an increase of PLA content. Critical content of PLA was found to be 20 wt% for effective improvement of both moduli and gas barrier properties. Incorporation of poly[ethylene‐co‐(methyl acrylate)] compatibilizer showed minimal effect on PLA structure. However, it did improve moduli and O2 barrier properties when sufficient amount (1.5 pph) was used in 10 wt% PLA/LDPE. In short, flow behaviour, ratio of polymer components and degree of compatibility together played intricate roles in the morphology and hence mechanical and transport properties of PLA/LDPE immiscible blends. © 2017 Society of Chemical Industry  相似文献   

5.
The first of this two‐article study showed that the addition of antioxidants can significantly improve the thermo‐oxidative resistance of bamboo fiber reinforced polypropylene composites (BFPCs). In this article, the effect of antioxidants on water absorption, thermal stability, crystallinity, and the dynamic mechanical properties of the composites were investigated. The results showed that the addition of antioxidants resulted in a slight increase in water absorption, but this increase can be reduced by controlling the ratio of the primary and secondary antioxidants. The glass transition temperature (Tg) of composites also slightly increased. However, the effects of antioxidants on the crystallinity as well as other thermal properties of BFPCs were small or even insignificant. The different combinations, ratios, and the adding amounts of antioxidants show tiny differences for all these properties. As a whole, the addition of minor antioxidants in the bamboo fiber (BF) polymer composites will not produce obvious negative effects on their overall performances. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44199.  相似文献   

6.
将竹纤维加入到环氧树脂中以形成增强环氧复合材料,研究了竹纤维竹粉和纳米二氧化硅(SiO2)对环氧树脂的力学性能和耐溶剂浸蚀性能的影响。竹纤维含量为15%时,竹纤维/环氧树脂的冲击强度比纯环氧树脂提高50%。纳米SiO2能同时增强和增韧竹纤维/环氧树脂,并提高其耐溶剂浸蚀性能,纳米SiO2含量为4%时,纳米SiO2/竹纤维/环氧树脂三元复合材料的冲击和拉伸强度分别比未添加纳米SiO2的竹纤维/环氧树脂提高40%和30%。当纳米SiO2/竹纤维/环氧树脂的质量比为4/15/85时,三元复合材料的综合性能较好。  相似文献   

7.
Pretreatment of the sisal fiber (SF) grafting with L‐lactide (LA) monomer via a ring‐opening polymerization catalyzed by a Sn(II)‐based catalyst was performed to improve the interfacial adhesion between SF and poly (lactic acid) (PLA). Biocomposites from LA‐grafted SF (SF‐g‐LA) and PLA were prepared by compression molding with fiber weight fraction of 10, 20, 30, and 40%, and then were investigated in contrast with alkali‐treated sisal fiber (ASF) reinforced PLA composites and untreated SF reinforced PLA composites. PLA composites reinforced by half‐and‐half SF‐g‐LA/untreated SF (half SF‐g‐LA) were prepared and studied as well, considering the disadvantages of SF‐g‐LA. The results showed that both the tensile properties and flexural properties of the SF‐g‐LA reinforced PLA composites were improved noticeably as the introduction of SF‐g‐LA, compared with pure PLA, untreated SF reinforced PLA composites and ASF reinforced PLA composites. The mechanical properties of the half SF‐g‐LA reinforced PLA composites were not worse, even better in some aspects, than the SF‐g‐LA reinforced PLA composites. Fourier transform infrared analysis and differential scanning calorimetry analysis exhibited that both the chemical composition and crystal structure of the SFs changed after LA grafting. In addition, the fracture surface morphology of the composites was studied by scanning electron microscopy. The morphological studies demonstrated that a better adhesion between LA‐grafted SF and PLA matrix was achieved. POLYM. COMPOS., 37:802–809, 2016. © 2014 Society of Plastics Engineers  相似文献   

8.
In situ hydrosilation reactions and ring‐opening metathesis polymerizations were demonstrated to occur in bulk samples of bamboo. Bamboo was infused with silicone precursors or cyclodiene monomers with the assistance of supercritical CO2 and subsequently crosslinked or polymerized, respectively. Bending stiffness, energy release rate, and specific fire resistance properties of the bamboo‐polymer composites were measured and compared with unmodified bamboo. Bamboo‐silicone composites showed an increase in fire resistance and a slight increase in mechanical properties. The bamboo‐poly(alkenamer) composites showed significant increases in mechanical properties. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

9.
An environmentally friendly bleached extruder chemi‐mechanical pulp fiber or wood flour was melt compounded with poly(lactic acid) (PLA) into a biocomposite and hot compression molded. The mechanical, thermal, and rheological properties were determined. The chemical composition, scanning electron microscopy, and Fourier transform infrared spectroscopy results showed that the hemicellulose in the pulp fiber raw material was almost completely removed after the pulp treatment. The mechanical tests indicated that the pulp fiber increased the tensile and flexural moduli and decreased the tensile, flexural, and impact strengths of the biocomposites. However, pulp fiber strongly reinforced the PLA matrix because the mechanical properties of pulp fiber‐PLA composites (especially the tensile and flexural strengths) were better than those of wood flour‐PLA composites. Differential scanning calorimetry analysis confirmed that both pulp fiber and wood flour accelerated the cold crystallization rate and increased the degree of crystallinity of PLA, and that this effect was greater with 40% pulp fiber. The addition of pulp fiber and wood flour modified the rheological behavior because the composite viscosity increased in the presence of fibers and decreased as the test frequency increased. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44241.  相似文献   

10.
采用热压成型工艺制备了竹粉增强的木质素-环氧树脂复合材料,探讨了竹粉的添加量及其粒径对复合材料力学性能及热机械性能(DMA)的影响。研究结果表明,随着竹粉含量的增加,复合材料的弯曲强度与冲击强度均增大;粒径适中(40~80目)的竹粉增强的木质素-环氧树脂复合材料的弯曲强度和冲击强度最佳。随着竹粉含量的增加,复合材料的初始储能模量逐渐增大,玻璃化转变温度先升高而后降低;粒径适中(40~80目)的竹粉的添加对材料初始储能模量的提升有利。适当提高木质素-环氧树脂复合材料的交联密度,可以得到更好的力学性能。  相似文献   

11.
Epoxy and polyester resins have been reinforced with methacrylamide (MAA) treated bamboo strip matting to develop bamboo fiber reinforced plastic composites. Bamboo mats were graft copolymerized with 1, 3, and 5% solution of MAA. The mechanical (tensile strength, elastic modulus, flexural strength, and flexural modulus), thermal, and water absorption properties of the composites were determined. One percent treatment of bamboo with MAA gave optimum results with epoxy resin. The mechanical properties were improved. TGA results reveal that the degradation temperature of the composite has improved after grafting. The weight loss of 1% MAA treated bamboo–epoxy composite reached a value of 95.132% at 795°C compared to 97.655% at 685°C of untreated bamboo–epoxy composite. Water absorption in the composites was studied by long term immersion and 2 h boiling in distilled water. The process of water absorption indicates Fickian mode of diffusion. MAA treatment results in reduced water uptake. There was improvement in the properties of pretreated bamboo‐polyester matrix composite as well. Three percent treatment of bamboo with MAA gave optimum results with polyester resin. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
Short bamboo fiber reinforced polypropylene composites were prepared by incorporation of various loadings of chemically modified bamboo fibers. Maleic anhydride grafted polypropylene (MA‐g‐PP) was used as compatibilizer to improve fiber–matrix adhesion. The effects of bamboo fiber loading and modification of the resin on the physical, mechanical, thermal, and morphological properties of the bamboo reinforced modified PP composites were studied. Scanning electron microscopy studies of the composites were carried out on the interface and fractured surfaces. Thermogravimetric analysis and IR spectroscopy were also carried out. At 50% volume fraction of the extracted bamboo fiber in the composites, considerable increase in mechanical properties like impact, flexural, tensile, and thermal behavior like heat deflection temperature were observed. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
以聚乳酸(PLA)和稻壳粉为原料,添加不同含量壳聚糖、硅烷偶联剂和氢氧化钠(NaOH)作为改性剂,通过压膜成型法制备了PLA/稻壳粉复合材料,并对复合材料的力学性能和吸水性进行了测试表征,同时对复合材料进行了X射线衍射仪(XRD)分析.结果表明,当壳聚糖含量为4 g时,复合材料的洛氏硬度较高,其冲击强度、弯曲强度、拉伸...  相似文献   

14.
Composites of polylactide (PLA, 100–60 wt%) and wood flour (0–40 wt%) were prepared to assess the effects of wood filler content on the mechanical, chemical, thermal, and morphological properties of the composites. The polysaccharide chitosan (0–10 wt%) was added as a potential coupling agent for the PLA‐wood flour composites. Addition of wood flour significantly increased the flexural modulus and the storage modulus of PLA‐wood flour composite, but neither the wood flour nor chitosan had an effect on the glass transition temperature (Tg). Fourier transform infrared spectra did not show any evidence of covalent bonding, but chitosan at the interface between wood and PLA is thought to have formed hydrogen bonds to PLA‐carbonyl groups. SEM images of fracture surfaces showed that fiber breakage was far more common than fiber pullout in the composites. No evidence of discrete chitosan domains was seen in SEM micrographs. When added at up to 10 wt% (based on wood flour mass), chitosan showed no significant effect on the mechanical, chemical, or thermal properties of the composites, with property changes depending on wood flour content only. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers.  相似文献   

15.
In this study, tri-layered composites were prepared by reinforcing poly-lactic acid (PLA) nano-hydroxyapatite (n-HA) (1 and 5 wt%) and 20 mol% continuous phosphate glass fibers (PGF). Initially, the effect of addition of 1 and 5% n-HA on the structural, thermal, mechanical, and thermo-mechanical properties of 100% PLA was investigated. With 5 wt% n-HA addition the tensile modulus (TM), flexural modulus (FM), tensile strength (TS), and flexural strength (FS) of 100% PLA was improve by 14.9, 47.4, 6, and 32.9%, respectively. Whereas, the un-notched impact strength of the nanocomposites suffer 2% deterioration. However, T g decreased by 0.3°C and T c increased by 10°C as 5 wt% n-HA was added to 100% PLA. Afterwards, the 5% n-HA/PLA composite were reinforced with 20 mol% continuous PGF and the TM, FM, TS, and FS of the tri-layered composites were 162.6, 412.5, 28.4, and 157.4% higher as compared to 100%PLA. Furthermore, the storage modulus of the 1% n-HA-filled composites was 500 MPa lower than 100%PLA, while 5 wt% n-HA-filled composites showed similar storage modulus as 100% PLA. 5 wt% n-HA-filled composite showed the highest peak of loss modulus which may be attribute to the chain segment of PLA matrix after the incorporation of HA. Thus, n-HA and PGF reinforcement resulted in improved mechanical properties of the composites and have great potential as biodegradable bone fixation device with enhanced load-bearing ability.  相似文献   

16.
In this study, we prepared short‐carbon‐fiber (CF)‐reinforced poly(lactic acid) (PLA)–thermoplastic polyurethane (TPU) blends by melt blending. The effects of the initial fiber length and content on the morphologies and thermal, rheological, and mechanical properties of the composites were systematically investigated. We found that the mechanical properties of the composites were almost unaffected by the fiber initial length. However, with increasing fiber content, the stiffness and toughness values of the blends were both enhanced because of the formation of a TPU‐mediated CF network. With the incorporation of 20 wt % CFs into the PLA–TPU blends, the tensile strength was increased by 70.7%, the flexural modulus was increased by 184%, and the impact strength was increased by 50.4%. Compared with that of the neat PLA, the impact strength of the CF‐reinforced composites increased up to 1.92 times. For the performance in three‐dimensional printing, excellent mechanical properties and a good‐quality appearance were simultaneously obtained when we printed the composites with a thin layer thickness. Our results provide insight into the relationship among the CFs, phase structure, and performance, as we achieved a good stiffness–toughness balance in the PLA–TPU–CF ternary composites. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46483.  相似文献   

17.
Unidirectional fiber reinforced blocked polyurethane (PU) composites have been prepared by the pultrusion process. The effects of processing variables on the mechanical properties and dynamic mechanical properties of fiber reinforced PU composites by pultrusion have been studied. The processing variables investigated included pulling rate (in-line speed), die temperature, postcure time and temperature, and filler type and content. The dynamic mechanical properties of the composites produced by the process were studied utilizing dynamic mechanical spectrometer. Results show that the composites possessed various optimum pulling rates at different die temperatures. From the DSC data analysis, swelling ratio, and mechanical properties, the optimum die temperature was determined. It was found that the mechanical properties increase with filler content for various types of filler. The increasing of mechanical properties depends on the optimum postcure temperature and time. However, the properties decreased for longer postcure times since the composite materials were degraded. The glass-transition temperature (Tg) increased slightly and the damping peak (tan δ) was broadened due to fiber reinforcement. The dynamic mechanical moduli (G′, G″) of pultruded PU composites are apparently higher than those of the matrices. The moduli (G′, G″) increase with increasing fiber and filler content, and the damping peak becomes broad. Effect of postcuring on the degree of crosslinking, Tg, and dynamic modulus will be discussed.  相似文献   

18.
The influences of hybrid bamboo and precipitated calcium carbonate (PCC) fillers in a recycled polypropylene/polyethylene matrix on the properties of bamboo plastic composites were studied. Thermogravimetric and Fourier transform infrared analyses of both thermo‐mechanically refined bamboo fiber (RBF) and ground bamboo particle (GBP) showed relatively higher holocellulose content in RBF, and more effective silane grafting on the RBF surface. The raw PCC particles contained over 95% calcium carbonate, and had an agglomerated form consisting of particles with a mean diameter of about 1.2 microns. Compounding the PCC particles with the plastic resin helped separate and disperse them in the matrix. Measured flexural strength and modulus of PCC‐only‐filled composites increased significantly from 15 to 30% PCC content levels, while the tensile and impact strength of composites decreased with the addition of PCC. For composites with hybrid bamboo and PCC fillers, tensile and flexural moduli were improved with the increase of PCC content. After silane treatment, RBF‐filled composites showed noticeably increased mechanical properties compared with those of GBP‐filled composites. For modulus values, PCC–bamboo–polymer composites were 3–4 times higher than those of PCC–polymer composites at high PCC levels. POLYM. COMPOS., 2012. © 2011 Society of Plastics Engineers  相似文献   

19.
Finely ground rice husk was used as a filler in two commercial grades of polypropylene (PP) in different amounts. Rice husk powder was chemically treated with dilute hydrochloric acid, dilute sodium hydroxide solution, and dimethyl sulfoxide. The mechanical, thermal, and rheological properties of PP filled with untreated and treated rice husk powder were determined. Effectiveness of PP grafted with acrylic acid, PP‐g‐AA, as a compatibilizer was examined. Rice husk powder treated with acid showed significant improvement in the flexural modulus of PP and also less water absorption. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
Lignocellulosic materials can be used for the development of bio‐based composites. This study explores the potential of long bamboo fiber bundles extracted directly from bamboo stems using the novel mechanical method and bamboo‐based fiber composites (BFC) fabricated using long bamboo fiber bundles and phenolic resins via cold pressing and thermal cure process. The microstructure, mechanical properties, and durability of BFC were evaluated, results being compared with raw bamboo and other commercialized bamboo fiber composites. The mechanical properties of BFC reinforced with 87% (w/w) long bamboo fiber bundles increased more than 50% than those of raw bamboo and were significantly higher than those of other bamboo‐based composites. Lower water absorption and thickness swelling were obtained in the case where bamboo fiber bundles with the small fineness. Higher tensile strength was obtained in the case where bamboo fiber bundles with large sizes of bamboo fiber bundles. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40371.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号