首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We propose the use of reduced‐order models to accelerate the solution of systems of equations using iterative solvers in time stepping schemes for large‐scale numerical simulation. The acceleration is achieved by determining an improved initial guess for the iterative process based on information in the solution vectors from previous time steps. The algorithm basically consists of two projection steps: (1) projecting the governing equations onto a subspace spanned by a low number of global empirical basis functions extracted from previous time step solutions, and (2) solving the governing equations in this reduced space and projecting the solution back on the original, high dimensional one. We applied the algorithm to numerical models for simulation of two‐phase flow through heterogeneous porous media. In particular we considered implicit‐pressure explicit‐saturation (IMPES) schemes and investigated the scope to accelerate the iterative solution of the pressure equation, which is by far the most time‐consuming part of any IMPES scheme. We achieved a substantial reduction in the number of iterations and an associated acceleration of the solution. Our largest test problem involved 93 500 variables, in which case we obtained a maximum reduction in computing time of 67%. The method is particularly attractive for problems with time‐varying parameters or source terms. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
We address time‐domain inverse electromagnetic scattering for determining unknown characteristics of an object from observations of the scattered field. Applications include non‐destructive characterization of media and optimization of material properties, for example, the design of radar absorbing materials. Another application is model reduction where a detailed model of a complex geometry is reduced to a simplified model. The inverse problem is formulated as an optimal control problem where the cost function to be minimized is the difference between the estimated and observed fields, and the control parameters are the unknown object characteristics. The problem is solved in a deterministic gradient‐based optimization algorithm using a parallel 2D FDTD scheme. Highly accurate analytical gradients are computed from the adjoint formulation. The inverse method is applied to the characterization of layered dispersive media and the determination of parameters in subcell models for thin sheets and narrow slots. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
We consider an optimal model reduction problem for large‐scale dynamical systems. The problem is formulated as a minimization problem over Grassmann manifold with two variables. This formulation allows us to develop a two‐sided Grassmann manifold algorithm, which is numerically efficient and suitable for the reduction of large‐scale systems. The resulting reduced system preserves the stability of the original system. Numerical examples are presented to show that the proposed algorithm is computationally efficient and robust with respect to the selection of initial projection matrices. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
To be feasible for computationally intensive applications such as parametric studies, optimization, and control design, large‐scale finite element analysis requires model order reduction. This is particularly true in nonlinear settings that tend to dramatically increase computational complexity. Although significant progress has been achieved in the development of computational approaches for the reduction of nonlinear computational mechanics models, addressing the issue of contact remains a major hurdle. To this effect, this paper introduces a projection‐based model reduction approach for both static and dynamic contact problems. It features the application of a non‐negative matrix factorization scheme to the construction of a positive reduced‐order basis for the contact forces, and a greedy sampling algorithm coupled with an error indicator for achieving robustness with respect to model parameter variations. The proposed approach is successfully demonstrated for the reduction of several two‐dimensional, simple, but representative contact and self contact computational models. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
We present a model reduction approach to the solution of large‐scale statistical inverse problems in a Bayesian inference setting. A key to the model reduction is an efficient representation of the non‐linear terms in the reduced model. To achieve this, we present a formulation that employs masked projection of the discrete equations; that is, we compute an approximation of the non‐linear term using a select subset of interpolation points. Further, through this formulation we show similarities among the existing techniques of gappy proper orthogonal decomposition, missing point estimation, and empirical interpolation via coefficient‐function approximation. The resulting model reduction methodology is applied to a highly non‐linear combustion problem governed by an advection–diffusion‐reaction partial differential equation (PDE). Our reduced model is used as a surrogate for a finite element discretization of the non‐linear PDE within the Markov chain Monte Carlo sampling employed by the Bayesian inference approach. In two spatial dimensions, we show that this approach yields accurate results while reducing the computational cost by several orders of magnitude. For the full three‐dimensional problem, a forward solve using a reduced model that has high fidelity over the input parameter space is more than two million times faster than the full‐order finite element model, making tractable the solution of the statistical inverse problem that would otherwise require many years of CPU time. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
We consider model reduction for magneto‐quasistatic field equations in the vector potential formulation. A finite element discretization of such equations leads to large‐scale differential‐algebraic equations of special structure. For model reduction of linear systems, we employ a balanced truncation approach, whereas nonlinear systems are reduced using a proper orthogonal decomposition method combined with a discrete empirical interpolation technique. We will exploit the special block structure of the underlying problem to improve the performance of the model reduction algorithms. Furthermore, we discuss an efficient evaluation of the Jacobi matrix required in nonlinear time integration of the reduced models. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
In many engineering problems, the behavior of dynamical systems depends on physical parameters. In design optimization, these parameters are determined so that an objective function is minimized. For applications in vibrations and structures, the objective function depends on the frequency response function over a given frequency range, and we optimize it in the parameter space. Because of the large size of the system, numerical optimization is expensive. In this paper, we propose the combination of Quasi‐Newton type line search optimization methods and Krylov‐Padé type algebraic model order reduction techniques to speed up numerical optimization of dynamical systems. We prove that Krylov‐Padé type model order reduction allows for fast evaluation of the objective function and its gradient, thanks to the moment matching property for both the objective function and the derivatives towards the parameters. We show that reduced models for the frequency alone lead to significant speed ups. In addition, we show that reduced models valid for both the frequency range and a line in the parameter space can further reduce the optimization time. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
9.
A rigorous method for stabilizing projection‐based linear reduced‐order models without significantly affecting their accuracy is proposed. Unlike alternative approaches, this method is computationally efficient. It requires primarily the solution of a small‐scale convex optimization problem. Furthermore, it is nonintrusive in the sense that it operates directly on readily available reduced‐order operators. These can be precomputed using any data compression technique including balanced truncation, balanced proper orthogonal decomposition, proper orthogonal decomposition, or moment matching. The proposed method is illustrated with three applications: the stabilization of the reduction of the Computational Fluid Dynamics‐based model of a linearized unsteady supersonic flow, the reduction of a Computational Structural Dynamics system, and the stabilization of the reduction of a coupled Computational Fluid Dynamics–Computational Structural Dynamics model of a linearized aeroelastic system in the transonic flow regime. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Multi‐response optimization methods rely on empirical process models based on the estimates of model parameters that relate response variables to a set of design variables. However, in determining the optimal conditions for the design variables, model uncertainty is typically neglected, resulting in an unstable optimal solution. This paper proposes a new optimization strategy that takes model uncertainty into account via the prediction region for multiple responses. To avoid obtaining an overly conservative design, the location and dispersion performances are constructed based on the best‐case strategy and the worst‐case strategy of expected loss. We reveal that the traditional loss function and the minimax/maximin strategy are both special cases of the proposed approach. An example is illustrated to present the procedure and the effectiveness of the proposed loss function. The results show that the proposed approach can give reasonable results when both the location and dispersion performances are important issues. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Multi‐scale problems are often solved by decomposing the problem domain into multiple subdomains, solving them independently using different levels of spatial and temporal refinement, and coupling the subdomain solutions back to obtain the global solution. Most commonly, finite elements are used for spatial discretization, and finite difference time stepping is used for time integration. Given a finite element mesh for the global problem domain, the number of possible decompositions into subdomains and the possible choices for associated time steps is exponentially large, and the computational costs associated with different decompositions can vary by orders of magnitude. The problem of finding an optimal decomposition and the associated time discretization that minimizes computational costs while maintaining accuracy is nontrivial. Existing mesh partitioning tools, such as METIS, overlook the constraints posed by multi‐scale methods and lead to suboptimal partitions with a high performance penalty. We present a multi‐level mesh partitioning approach that exploits domain‐specific knowledge of multi‐scale methods to produce nearly optimal mesh partitions and associated time steps automatically. Results show that for multi‐scale problems, our approach produces decompositions that outperform those produced by state‐of‐the‐art partitioners like METIS and even those that are manually constructed by domain experts. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
The discrete optimal orientation design of the composite laminate can be treated as a material selection problem dealt with by using the concept of continuous topology optimization method. In this work, a new bi‐value coding parameterization (BCP) scheme of closed form is proposed to this aim. The basic idea of the BCP scheme is to ‘code’ each material phase using integer values of +1 and –1 so that each available material phase has one unique ‘code’ consisting of +1 and/or –1 assigned to design variables. Theoretical and numerical comparisons between the proposed BCP scheme and existing schemes show that the BCP has the advantage of an evident reduction of the number of design variables in logarithmic form. The benefit is particularly remarkable when the number of candidate materials becomes important in large‐scale problems. Numerical tests with up to 36 candidate material orientations are illustrated for the first time to indicate the reliability and efficiency of the BCP scheme in solving this kind of problem. It proves that the BCP is an interesting and valuable scheme to achieve the optimal orientations for large‐scale design problems. Besides, a four‐layer laminate example is tested to demonstrate that the proposed BCP scheme can easily be extended to multilayer problems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
The model reduction of mechanical problems involving contact remains an important issue in computational solid mechanics. In this article, we propose an extension of the hyper‐reduction method based on a reduced integration domain to frictionless contact problems written by a mixed formulation. As the potential contact zone is naturally reduced through the reduced mesh involved in hyper‐reduced equations, the dual reduced basis is chosen as the restriction of the dual full‐order model basis. We then obtain a hybrid hyper‐reduced model combining empirical modes for primal variables with finite element approximation for dual variables. If necessary, the inf‐sup condition of this hybrid saddle‐point problem can be enforced by extending the hybrid approximation to the primal variables. This leads to a hybrid hyper‐reduced/full‐order model strategy. This way, a better approximation on the potential contact zone is further obtained. A posttreatment dedicated to the reconstruction of the contact forces on the whole domain is introduced. In order to optimize the offline construction of the primal reduced basis, an efficient error indicator is coupled to a greedy sampling algorithm. The proposed hybrid hyper‐reduction strategy is successfully applied to a 1‐dimensional static obstacle problem with a 2‐dimensional parameter space and to a 3‐dimensional contact problem between two linearly elastic bodies. The numerical results show the efficiency of the reduction technique, especially the good approximation of the contact forces compared with other methods.  相似文献   

14.
Modal derivative is an approach to compute a reduced basis for model order reduction of large‐scale nonlinear systems that typically stem from the discretization of partial differential equations. In this way, a complex nonlinear simulation model can be integrated into an optimization problem or the design of a controller, based on the resulting small‐scale state‐space model. We investigate the approximation properties of modal derivatives analytically and thus lay a theoretical foundation of their use in model order reduction, which has been missing so far. Concentrating on the application field of structural mechanics and structural dynamics, we show that the concept of modal derivatives can also be applied as nonlinear extension of the Craig–Bampton family of methods for substructuring. We furthermore generalize the approach from a pure projection scheme to a novel reduced‐order modeling method that replaces all nonlinear terms by quadratic expressions in the reduced state variables. This complexity reduction leads to a frequency‐preserving nonlinear quadratic state‐space model. Numerical examples with carefully chosen nonlinear model problems and three‐dimensional nonlinear elasticity confirm the analytical properties of the modal derivative reduction and show the potential of the proposed novel complexity reduction methods, along with the current limitations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Topology optimization of large scale structures is computationally expensive, notably because of the cost of solving the equilibrium equations at each iteration. Reduced order models by projection, also known as reduced basis models, have been proposed in the past for alleviating this cost. We propose here a new method for coupling reduced basis models with topology optimization to improve the efficiency of topology optimization of large scale structures. The novel approach is based on constructing the reduced basis on the fly, using previously calculated solutions of the equilibrium equations. The reduced basis is thus adaptively constructed and enriched, based on the convergence behavior of the topology optimization. A direct approach and an approach with adjusted sensitivities are described, and their algorithms provided. The approaches are tested and compared on various 2D and 3D minimum compliance topology optimization benchmark problems. Computational cost savings by up to a factor of 12 are demonstrated using the proposed methods. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
A general approach to the dimensional reduction of non‐linear finite element models of solid dynamics is presented. For the Newmark implicit time‐discretization, the computationally most expensive phase is the repeated solution of the system of linear equations for displacement increments. To deal with this, it is shown how the problem can be formulated in an approximation (Ritz) basis of much smaller dimension. Similarly, the explicit Newmark algorithm can be also written in a reduced‐dimension basis, and the computation time savings in that case follow from an increase in the stable time step length. In addition, the empirical eigenvectors are proposed as the basis in which to expand the incremental problem. This basis achieves approximation optimality by using computational data for the response of the full model in time to construct a reduced basis which reproduces the full system in a statistical sense. Because of this ‘global’ time viewpoint, the basis need not be updated as with reduced bases computed from a linearization of the full finite element model. If the dynamics of a finite element model is expressed in terms of a small number of basis vectors, the asymptotic cost of the solution with the reduced model is lowered and optimal scalability of the computational algorithm with the size of the model is achieved. At the same time, numerical experiments indicate that by using reduced models, substantial savings can be achieved even in the pre‐asymptotic range. Furthermore, the algorithm parallelizes very efficiently. The method we present is expected to become a useful tool in applications requiring a large number of repeated non‐linear solid dynamics simulations, such as convergence studies, design optimization, and design of controllers of mechanical systems. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
To extend the application range of the distinct element method from a laboratory scale into a large scale such as a geological scale, we need to deal with an upscale issue associated with simulating spontaneous crack generation problems in large‐scale quasi‐static systems. Toward this direction, three important simulation issues, which may affect the quality of the particle simulation results of a quasi‐static system, have been addressed in details in this paper. The first simulation issue is how to determine the particle‐scale mechanical properties of a particle from the measured macroscopic mechanical properties of rocks. The second simulation issue is that the fictitious time, rather than the physical time, is used in the particle simulation of a quasi‐static problem. The third simulation issue is that the conventional loading procedure used in the distinct element method is conceptually inaccurate, at least from the force propagation point of view. A new loading procedure is proposed to solve the conceptual problem resulting from the third simulation issue. The proposed loading procedure is comprised of two main types of periods, a loading period and a frozen period. Using the proposed loading procedure, the parameter selection problem stemming from the first issue can be somewhat solved. Since the second issue is an inherent one, it is strongly recommended that a particle‐size sensitivity analysis of at least two different models, which have the same geometry but different smallest particle sizes, be carried out to confirm the particle simulation result of a large‐scale quasi‐static system. The related simulation results have demonstrated the usefulness and correctness of the proposed loading procedure for dealing with spontaneous crack generation problems in large‐scale quasi‐static geological systems. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
As parallel and distributed computing gradually becomes the computing standard for large scale problems, the domain decomposition method (DD) has received growing attention since it provides a natural basis for splitting a large problem into many small problems, which can be submitted to individual computing nodes and processed in a parallel fashion. This approach not only provides a method to solve large scale problems that are not solvable on a single computer by using direct sparse solvers but also gives a flexible solution to deal with large scale problems with localized non‐linearities. When some parts of the structure are modified, only the corresponding subdomains and the interface equation that connects all the subdomains need to be recomputed. In this paper, the dual–primal finite element tearing and interconnecting method (FETI‐DP) is carefully investigated, and a reduced back‐substitution (RBS) algorithm is proposed to accelerate the time‐consuming preconditioned conjugate gradient (PCG) iterations involved in the interface problems. Linear–non‐linear analysis (LNA) is also adopted for large scale problems with localized non‐linearities based on subdomain linear–non‐linear identification criteria. This combined approach is named as the FETI‐DP‐RBS‐LNA algorithm and demonstrated on the mechanical analyses of a welding problem. Serial CPU costs of this algorithm are measured at each solution stage and compared with that from the IBM Watson direct sparse solver and the FETI‐DP method. The results demonstrate the effectiveness of the proposed computational approach for simulating welding problems, which is representative of a large class of three‐dimensional large scale problems with localized non‐linearities. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
The optimization of subsurface flow processes is important for many applications, including oil field operations and the geological storage of carbon dioxide. These optimizations are very demanding computationally due to the large number of flow simulations that must be performed and the typically large dimension of the simulation models. In this work, reduced‐order modeling (ROM) techniques are applied to reduce the simulation time of complex large‐scale subsurface flow models. The procedures all entail proper orthogonal decomposition (POD), in which a high‐fidelity training simulation is run, solution snapshots are stored, and an eigen‐decomposition (SVD) is performed on the resulting data matrix. Additional recently developed ROM techniques are also implemented, including a snapshot clustering procedure and a missing point estimation technique to eliminate rows from the POD basis matrix. The implementation of the ROM procedures into a general‐purpose research simulator is described. Extensive flow simulations involving water injection into a geologically complex 3D oil reservoir model containing 60 000 grid blocks are presented. The various ROM techniques are assessed in terms of their ability to reproduce high‐fidelity simulation results for different well schedules and also in terms of the computational speedups they provide. The numerical solutions demonstrate that the ROM procedures can accurately reproduce the reference simulations and can provide speedups of up to an order of magnitude when compared with a high‐fidelity model simulated using an optimized solver. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
A new approach for the dimensional reduction via projection of nonlinear computational models based on the concept of local reduced‐order bases is presented. It is particularly suited for problems characterized by different physical regimes, parameter variations, or moving features such as discontinuities and fronts. Instead of approximating the solution of interest in a fixed lower‐dimensional subspace of global basis vectors, the proposed model order reduction method approximates this solution in a lower‐dimensional subspace generated by most appropriate local basis vectors. To this effect, the solution space is partitioned into subregions, and a local reduced‐order basis is constructed and assigned to each subregion offline. During the incremental solution online of the reduced problem, a local basis is chosen according to the subregion of the solution space where the current high‐dimensional solution lies. This is achievable in real time because the computational complexity of the selection algorithm scales with the dimension of the lower‐dimensional solution space. Because it is also applicable to the process of hyper reduction, the proposed method for nonlinear model order reduction is computationally efficient. Its potential for achieving large speedups while maintaining good accuracy is demonstrated for two nonlinear computational fluid and fluid‐structure‐electric interaction problems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号