首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 15 毫秒
1.
2.
The objective of this contribution is to model ductile damage phenomena under consideration of large inelastic strains, to couple the corresponding constitutive law with a multi‐layer shell kinematics and to give finally an adequate finite element formulation. An elastic–plastic constitutive law is formulated by using a spatial hyperelasto‐plastic formulation based on the multiplicative decomposition of the deformation gradient. To include isotropic ductile damage the continuum damage model of Rousselier is modified so as to consider large strains and additionally extended by various void nucleation and macro‐crack criteria. In order to achieve numerical efficiency, elastic strains are supposed to be sufficiently small providing a numerical effective integration based on the backward Euler rule. Finite element formulation is enriched by means of the enhanced strain concept. Thus the well‐known deficiencies due to incompressible deformations and the inclusion of transverse strains are avoided. Several examples are given to demonstrate the performance of the algorithms developed concerning large inelastic strains of shells and ductile damage phenomena. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

3.
4.
The non‐conventional exact geometry shell elements based on the Timoshenko–Mindlin kinematics with five displacement degrees of freedom are proposed. The term ‘exact geometry (EXG)’ reflects the fact that coefficients of the first and second fundamental forms of the reference surface and Christoffel symbols are taken exactly at every Gauss integration point. The choice of only displacements as fundamental shell unknowns gives an opportunity to derive strain–displacement relationships, which are invariant under rigid‐body shell motions in a convected curvilinear coordinate system. This paper presents a newly developed family consisting of three hybrid and one displacement‐based four‐node EXG shell elements. To avoid shear and membrane locking and have no spurious zero energy modes, the ANS concept is employed. The ANS interpolations satisfy exactly the plate compatibility equation for in‐plane strains. As a result, all EXG shell elements developed pass membrane and bending plate patch tests and exhibit a superior performance in the case of distorted coarse mesh configurations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
A multi‐scale cohesive numerical framework is proposed to simulate the failure of heterogeneous adhesively bonded systems. This multi‐scale scheme is based on Hill's variational principle of energy equivalence between the higher and lower level scales. It provides an easy way to obtain accurate homogenized macroscopic properties while capturing the physics of failure processes at the micro‐scale in sufficient detail. We use an isotropic rate‐dependent damage model to mimic the failure response of the constituents of heterogeneous adhesives. The finite element method is used to solve the equilibrium equation at each scale. A nested iterative scheme inspired by the return mapping algorithm used in computational inelasticity is implemented. We propose a computationally attractive technique to couple the macro‐ and micro‐scales for rate‐dependent constitutive laws. We introduce an adhesive patch test to study the numerical performance, including spatial and temporal convergence of the multi‐scale scheme. We compare the solution of the multi‐scale cohesive scheme with a direct numerical simulation. Finally, we solve mode I and mode II fracture problems to demonstrate failure at the macro‐scale. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
We present in this paper an efficient and accurate low‐order solid‐shell element formulation for analyses of large deformable multilayer shell structures with non‐linear materials. The element has only displacement degrees of freedom (dofs), and an optimal number of enhancing assumed strain (EAS) parameters to pass the patch tests (both membrane and out‐of‐plane bending) and to remedy volumetric locking. Based on the mixed Fraeijs de Veubeke‐Hu‐Washizu (FHW) variational principle, the in‐plane and out‐of‐plane bending behaviours are improved and the locking associated with (nearly) incompressible materials is avoided via a new efficient enhancement of strain tensor. Shear locking and curvature thickness locking are resolved effectively by using the assumed natural strain (ANS) method. Two non‐linear 3‐D constitutive models (Mooney–Rivlin material and hyperelastoplastic material at finite strain) are applied directly without requiring the enforcement of the plane‐stress assumption. In particular, we give a simple derivation for the hyperelastoplastic model using spectral representations. In addition, the present element has a well‐defined lumped mass matrix, and provides double‐side contact surfaces for shell contact problems. With the dynamics referred to a fixed inertial frame, the present element can be used to analyse multilayer shell structures undergoing large overall motion. Numerical examples involving static analyses and implicit/explicit dynamic analyses of multilayer shell structures with both material and geometric non‐linearities are presented, and compared with existing results obtained from other shell elements and from a meshless method. It is shown that elements that did not pass the out‐of‐plane bending patch test could not provide accurate results, as compared to the present element formulation, which passed the out‐of‐plane bending patch test. The present element proves to be versatile and efficient in the modelling and analyses of general non‐linear composite multilayer shell structures. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
A direct method for soil–structure interaction analysis in two‐dimensional medium is presented in time domain, which is based on the transformation of the analytical frequency‐dependent dynamic stiffness matrix. The present dynamic stiffness matrix for the far‐field region is constructed by assembling stiffness matrices of the analytical frequency‐dependent dynamic infinite elements, so that the equation of motion can be analytically transformed into the time‐domain equation. An efficient procedure is devised to evaluate the dynamic responses in time domain. Verification of the present formulation is carried out by comparing the compliances for a strip foundation on a homogeneous and layered half‐spaces with those obtained by other methods. Numerical analyses are also carried out for the transient responses of an elastic block and tunnel in a homogeneous and a layered half‐space. The comparisons with those by other approaches indicate that the proposed time‐domain method for soil–structure interaction analysis gives good solutions. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

8.
A large amount of research in computational mechanics has biased toward atomistic simulations. This trend, on one hand, is due to the increased demand to perform computations in nanoscale and, on the other hand, is due to the rather simple applications of pairwise potentials in modeling the interactions between atoms of a given crystal. The Cauchy–Born (CB) hypothesis has been used effectively to model the behavior of crystals under different loading conditions, in which the comparison with molecular dynamics simulations presents desirable coincidence between the results. A number of research works have been devoted to the validity of CB hypothesis and its application in post‐elastic limit. However, the range of application of CB hypothesis is limited, and it remains questionable whether it is still applicable beyond the validity limit. In this paper, a multi‐scale technique is developed for modeling of plastic deformations in nanoscale materials. The deformation gradient is decomposed into the plastic and elastic parts, i.e., F  =  F p F e. This decomposition is in contrast to the conventional decomposition, F  =  F e F p, generally encountered in continuum and crystal plasticity. It is shown that the former decomposition is more appropriate for the problem dealt within this work. Inspired by crystal plasticity, the plastic part is determined from the slip on potential slip systems. Based on the assumption that the CB hypothesis remains valid in the homogeneous deformation, the elastic deformation gradient resulting from the aforementioned decomposition is employed in conjunction with the CB hypothesis to update the state variables for face‐centered cubic crystals. The assumption of homogeneity of elastic deformation gradient is justified by the fact that elastic deformations are considerably smaller than the plastic deformations. The computational algorithms are derived in details, and numerical simulations are presented through several examples to demonstrate the capability of the proposed computational algorithm in the modeling of golden crystals under different loading conditions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
A mixed finite element for coupled thermo‐hydro‐mechanical (THM) analysis in unsaturated porous media is proposed. Displacements, strains, the net stresses for the solid phase; pressures, pressure gradients, Darcy velocities for pore water and pore air phases; temperature, temperature gradients, the total heat flux are interpolated as independent variables. The weak form of the governing equations of coupled THM problems in porous media within the element is given on the basis of the Hu–Washizu three‐filed variational principle. The proposed mixed finite element formulation is derived. The non‐linear version of the element formulation is further derived with particular consideration of the THM constitutive model for unsaturated porous media based on the CAP model. The return mapping algorithm for the integration of the rate constitutive equation, the consistent elasto‐plastic tangent modulus matrix and the element tangent stiffness matrix are developed. For geometrical non‐linearity, the co‐rotational formulation approach is utilized. Numerical results demonstrate the capability and the performance of the proposed element in modelling progressive failure characterized by strain localization and the softening behaviours caused by thermal and chemical effects. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号