首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
Climate change in the Arctic is expected to have a major impact on stream ecosystems, affecting hydrological and thermal regimes. Although temperature is important to a range of in‐stream processes, previous Arctic stream temperature research is limited—focused on glacierised headwaters in summer—with limited attention to snowmelt streams and winter. This is the first high‐resolution study on stream temperature in north‐east Greenland (Zackenberg). Data were collected from five streams from September 2013 to September 2015 (24 months). During the winter, streams were largely frozen solid and water temperature variability low. Spring ice‐off date occurred simultaneously across all streams, but 11 days earlier in 2014 compared with 2015 due to thicker snow insulation. During summer, water temperature was highly variable and exhibited a strong relationship with meteorological variables, particularly incoming shortwave radiation and air temperature. Mean summer water temperature in these snowmelt streams was high compared with streams studied previously in Svalbard, yet was lower in Swedish Lapland, as was expected given latitude. With global warning, Arctic stream thermal variability may be less in summer and increased during the winter due to higher summer air temperature and elevated winter precipitation, and the spring and autumn ice‐on and ice‐off dates may extend the flowing water season—in turn affecting stream productivity and diversity.  相似文献   

2.
为探究原木跌水结构对河流潜流带温度场的影响,应用有限元软件COMSOL Multiphysics构建了地表水-地下水二维耦合模型,分析原木跌水结构的高度、间距及数量等参数变化对河流潜流带温度场的影响规律。结果表明:河道中原木跌水结构的添加会改变潜流带局部的压力分布,增加原木高度、间距和数量都会使河床压力最大值增大;随着原木跌水结构高度增加,原木下方区域温度受地表水水温的影响范围扩大;随着原木跌水结构间距和数量的增加,潜流带热缓冲作用增强。原木跌水结构设置参数的变化将不同程度影响潜流带温度场的变化和热缓冲作用,引起潜流带内部的热异质性,从而增加底栖生物和水生生境的多样性。  相似文献   

3.
Stream temperatures are often used to predict salmonid embryo development; but there are very few medium‐term studies of the heat exchanges determining water column and bed temperatures. Furthermore, no research exists on the energy balance for sub‐arctic Scottish rivers. This paper reports results of a hydrometeorological study of a Cairngorm stream (Girnock burn, northeast Scotland) over the salmon spawning–hatch season (late October 2001 to mid‐April 2002) that aims: (1) to characterize seasonal and sub‐seasonal stream energy budget and thermal dynamics; and (2) to explain these variations with respect to meteorological and hydrological factors. In terms of average energy flux contributions, sensible heat (38.7%), the bed heat flux (37.0%) and friction at the stream bed and banks (24.3%) are heat sources, while latent heat (73.1%) and net radiation (26.9%) are heat sinks. All energy losses and 38.7% of heat gains occur at the air–water interface; and 61.3% of energy gains (including friction) take place at the water–channel bed interface. Typically, temperatures increase (+1.97°C) and show dampening of thermal response from the water column to depth in the stream bed. The most salient findings include: (1) the stream bed (atmosphere) is the dominant energy source (sink) for heating (cooling) channel water, which may be attributed to inferred heat advection by groundwater up‐welling into the bed of this upland stream; (2) sensible heat is the primary atmospheric energy source due to limited net radiation; (3) friction at the stream bed and banks is an important heat source. Energy budget terms and temperatures exhibit (sub‐)seasonal changes in response to meteorological and hydrological conditions; a schematic diagram is presented to summarize these results. This paper clearly illustrates the need for further medium‐ to long‐term empirical stream energy balance research to characterize heat flux dynamics and, thus, understand and predict water temperature variations over time‐scales of relevance to biological studies. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
In 1991 the New Zealand Department of Conservation implemented Project River Recovery (PRR) to restore braided, gravel‐bed riverine and wetland habitats in the Upper Waitaki Basin on the South Island. These are critical habitats for wading and shore birds, including threatened species, but have been degraded by hydroelectric power development. This paper evaluates the effectiveness of PRR after more than 10 years with regard to key issues, effective methods, and lessons learned. Few restoration programs explicitly include evaluation of effectiveness or criteria for success, thereby limiting knowledge transfer and benefits to new or ongoing projects. This evaluation is based on site visits, interviews with program staff, review of PRR documents, comparisons with international restoration programs and recommendations, and a Strengths, Weaknesses, Opportunities, and Threats (SWOT) analysis. Primary components include pest plant and animal control, wetland construction and enhancement, research and monitoring, and public awareness. The program has elements common to many other restoration programs, including strategic planning and annual reporting. Its strengths include well‐defined goals, stakeholder collaboration, and successful integration of science with restoration as part of adaptive management. PRR could benefit from improved understanding of physical and watershed characteristics, expansion of goals at multiple scales, additional collaboration with other organizations, and knowledge transfer. Threats include weed invasions and increased recreational and land‐use impacts. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
Despite the importance of thermal conditions in influencing biodiversity of alpine river systems, knowledge of year round stream temperature variability is very limited. This paper advances understanding of alpine stream temperature dynamics using hourly resolution data collected over two consecutive years at five sites within a glacierized basin in the French Pyrénées. The potential utility of temperature for understanding river flow patterns at ungauged sites (most notably during winter) is explored. The results indicated marked heterogeneity in water column temperatures; groundwater streams were typically warmer and more thermally stable than those draining snow and ice. Based upon stream temperature patterns, it appears possible to differentiate between river flow conditions including: free‐flowing, surface freezing, dewatering and snow cover. Notably, groundwater‐fed streams appeared to exhibit greater flow permanency than meltwater‐fed streams, the latter freezing for extended periods. These new insights into long‐term alpine stream thermal conditions have major implications for understanding the strategies adopted by benthic macroinvertebrate taxa when overwintering, particularly where streams freeze. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
We develop and illustrate the concept of ‘hydrologic spiralling’ using a high‐resolution (2 × 2 m grid cell) simulation of hyporheic hydrology across a 1.7 km2 section of the sand, gravel and cobble floodplain aquifer of the upper Umatilla River of northeastern Oregon, USA. We parameterized the model using a continuous map of surface water stage derived from LIDAR remote sensing data. Model results reveal the presence of complex spatial patterns of hyporheic exchange across spatial scales. We use simulation results to describe streams as a collection of hierarchically organized, individual flow paths that spiral across ecotones within streams and knit together stream ecosystems. Such a view underscores the importance of: (1) gross hyporheic exchange rates in rivers, (2) the differing ecological roles of short and long hyporheic flow paths, and (3) the downstream movement of water and solutes outside of the stream channel (e.g. in the alluvial aquifer). Hydrologic spirals underscore important limitations of empirical measures of biotic solute uptake from streams and provide a needed hydrologic framework for emerging research foci in stream ecology such as hydrologic connectivity, spatial and temporal variation in biogeochemical cycling rates and the role of stream geomorphology as a dominant control on stream ecosystem dynamics. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Nitrogen dynamics were studied in the interstitial environment (i.e. hyporheic zone) of a sandy‐bottom stream in a rural landscape. A third‐order stream in Brittany (France) was studied at 11 stations (riffles) to evaluate spatial patterns of water exchange between surface and interstitial habitats. More intensive sampling was conducted in three riffles selected according to their hydrological characteristics. Chemical characteristics (especially nitrogen) and microbial denitrification were studied at 12.5 and 25 cm depth upstream, and 25 cm depth downstream of each riffle. This study confirms that the interstitial habitat of a N‐rich stream acts as a sink for the nitrate‐nitrogen. Experimental manipulation of sediment cores indicates that denitrification is limited by carbon in surface (i.e. benthic) and by nitrate in hyporheic sediments. River regulation increases inputs of fine sediments, modifies river channel location, and generates changes in the spatial patterns of biogeochemical processes, water origins, and hydrologic exchanges. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
Physicochemical relationships in the boundary zone between groundwater and surface water (i.e. the hyporheic zone) are controlled by surface water hydrology and the hydrogeologic properties of the riverbed. We studied how sediment permeability and river discharge altered the vertical hydraulic gradient (VHG) and water quality of the hyporheic zone within the Hanford Reach of the Columbia River. The Columbia River at Hanford is a large, cobble‐bed river where water level fluctuates up to 2 m daily because of hydropower generation. Concomitant with river stage recordings, continuous readings were made of water temperature, specific conductance, dissolved oxygen and water level of the hyporheic zone. The water level data were used to calculate VHG between the river and hyporheic zone. Sediment permeability was estimated using slug tests conducted in piezometers installed into the river bed. The response of water quality measurements and VHG to surface water fluctuations varied widely among study sites, ranging from no apparent response to covariance with river discharge. At some sites, a hysteretic relationship between river discharge and VHG was indicated by a time lag in the response of VHG to changes in river stage. The magnitude, rate of change and hysteresis of the VHG response varied the most at the least permeable location (hydraulic conductivity (K) = 2.9 × 10?4 cms?1) and the least at the most permeable location (K = 8.0 × 10?3 cms?1). Our study provides empirical evidence that sediment properties and river discharge both control the water quality of the hyporheic zone. Regulated rivers, like the Columbia River at Hanford, that undergo large, frequent discharge fluctuations represent an ideal environment in which to study hydrogeologic processes over relatively short time periods (i.e. days to weeks) that would require much longer periods (i.e. months to years) to evaluate in unregulated systems. Copyright © 2006 John Wiley & Sons Ltd.  相似文献   

9.
This paper examines ecosystem restoration practices that focus on water temperature reductions in the upper mainstem Willamette River, Oregon, for the benefit of endangered salmonids and other native cold‐water species. The analysis integrates hydrologic, natural science and economic models to determine the cost‐effectiveness of alternative water temperature reduction strategies. A temperature model is used to simulate the effects of combinations of upstream riparian shading and flow augmentations on downstream water temperatures. Costs associated with these strategies are estimated and consist of the opportunity costs of lost agricultural production and recreation opportunities due to flow releases from an up‐stream reservoir. Temperature reductions from another strategy, hyporheic flow enhancement, are also examined. Restoration strategies associated with enhanced hyporheic cooling consist of removal/reconnection of current obstacles to the creation of dynamic river channel complexity. The observed reduction of summer water temperatures associated with enhanced channel complexity indicates that restoring hyporheic flow processes is more likely to achieve cost‐effective temperature reductions and meet the total maximum daily load (TMDL) target than conventional approaches that rely on increased riparian shading or/and combinations of flow augmentation. Although the costs associated with the hyporheic flow enhancement approach are substantial, the effects of such a long‐term ecological improvement of the floodplain are expected to assist the recovery of salmonid populations and provide ancillary benefits to society. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
Changes in water quality that occur as water flows along hyporheic flow paths may have important effects on surface water quality and aquatic habitat, yet very few studies have examined these hyporheic processes along large gravel bed rivers. To determine water quality changes associated with hyporheic flow along the Willamette River, Oregon, we studied hyporheic flow at six‐bar deposit sites positioned between the main river channel and connected lentic alcoves. We installed piezometers and wells at each site and measured water levels and water quality in river, hyporheic and alcove water. Piezometric surfaces along with substrate characteristics were used to determine hyporheic flow path direction and hyporheic flow rate. At all sites, hyporheic flow moved from the river through bar deposits into alcove surface water. Stable isotope analysis showed little influence of upwelling groundwater. At a majority of sites, hyporheic dissolved oxygen and ammonium decreased relative to river water, and hyporheic specific conductance, nitrate and soluble reactive phosphorous increased relative to river water. At three sites, hyporheic temperature decreased 3–7°C relative to river water; there was less temperature change at the other three sites. At the two sites with the highest hyporheic flow rates, hyporheic cooling was propagated into the alcove surface water. Hyporheic changes had the greatest effect on alcove water quality at sites with highly permeable substrates and high‐hyporheic flow rates. The best approach to enhancing hyporheic flows and associated water quality functions is through restoring fluviogeomorphic channel processes that create and maintain high‐permeability gravel deposits conducive to hyporheic flow. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号