首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In situ PET microfibrils are created by drawing melt‐blended PP and PET. The drawn blend is used to prepare polymer/polymer MFCs, and isolated PET microfibrils are used for the manufacturing of MF‐SPCs. Samples are prepared with different fibril orientations to determine the effect of orientation on the mechanical properties of the two types of composites. The resulting composites show improvements in stiffness of 77% for uniaxial MFCs, and 125% for uniaxial MF‐SPCs, with the highest recorded modulus of 8.57 GPa for a uniaxial MF‐SPC sample. SEM observations confirm that the fibrillar structure and excellent alignment is maintained. The changes in the reinforcement effect with orientation are very similar to those predicted by the rule of mixtures for the crossply.

  相似文献   


2.
The effect of hydrophilic and hydrophobic nanosilica on the morphological, mechanical and thermal properties of polyamide 6 (PA) and poly(propylene) (PP) blends is investigated by extrusion compounding. Depending on the difference between the polymer/nanoparticle interfacial tensions, different morphologies are obtained as highlighted by TEM and SEM. Hydrophobic nanosilica migrates mainly at the PA/PP interface, which leads to a clear refinement of PP droplet size. The macroscopic properties of the hybrid blends are discussed and interpreted in relation with the blend morphology and melt‐mixing procedure. The control over coalescence allows a morphology refinement of the blends and improves mechanical properties.

  相似文献   


3.
Recycling of thermoplastic wastes consisting of PE/PP/PS/HIPS blends was investigated by using SEBS/EPR and SBR/EPR as compatibilizers. The effect of the binary compatibilizer systems and processing conditions on the mechanical properties and morphology of the blends are discussed. The SEBS/EPR system allowed blends with better mechanical properties to be obtained than the SBR/EPR system; this was attributed to the chemical structure similarity between compatibilizers and recycled materials. The optimal conditions for processing of the recycled thermoplastics (blends) were found to be 190 °C, 14 min of processing time and 3.5 wt.‐% of compatibilizer. The morphology and mechanical properties of the blends were discussed using theoretical phase diagrams and models proposed in the literature, and good agreements between these properties were found.

  相似文献   


4.
The effect of nanosilica addition on the morphology and mechanical properties of blends of isotactic PP and an ethylene/octene copolymer (EOC) is studied. TEM reveals that the well‐dispersed nanoparticles are localized exclusively in the PP phase. In the presence of a maleated PP compatibilizer addition of nanosilica leads to more finely dispersed EOC domains and a finer co‐continuous morphology. The nanoparticles reduce the rate of coalescence of the dispersed phase domains. The mechanical properties depend on the EOC and PP‐g‐MA content. Tensile and flexural properties are significantly enhanced in the presence of the silica nanoparticles, whereas impact properties are not affected. These enhancements are attributed to the favorable microstructure of the blends.

  相似文献   


5.
The filler networking process promoted by multiwalled CNTs is studied in neat and CB‐filled poly(1,4‐cis‐isoprene) matrices. TEM analysis, tensile, dynamic‐mechanical, and electrical measurements reveal that the CNTs form a filler network at low concentration in neat PI and a continuous hybrid filler network at a lower CNT concentration in the presence of CB, with a remarkable increase of the nonlinear dynamic‐mechanical behavior of the nanocomposites at low deformation. A synergistic effect between CB and CNTs is demonstrated. The addition of CNTs to the CB‐filled PI matrix leads to initial modulus values much larger than those calculated by simple addition of the two initial moduli of the composites containing only CB and only CNTs, respectively.

  相似文献   


6.
Flexural, impact resistance, tensile, and sound absorption properties of composites from cornhusk fiber (CHF) and PP have been investigated. The effect of holding temperature, CHF length, CHF concentration, and enzyme treatment of CHF on mechanical properties and the effect of the latter two on sound absorption have been studied. Compared with jute/PP composites, CHF/PP composites have similar impact resistance, 33% higher flexural strength, 71% lower flexural modulus, 43% higher tensile strength, 54% lower tensile modulus, and slightly higher noise reduction coefficient. Enzyme treatment of CHF results in increased mechanical and sound absorption properties.

  相似文献   


7.
TPVs are prepared by dynamic vulcanization in which crosslinking of an elastomeric polymer takes place during its melt mixing with a thermoplastic polymer under high‐shear conditions. 30:70 wt% blends of PP and ethylene–octene copolymer are vulcanized using electron‐induced reactive processing (EIReP) employing a range of absorbed doses (25, 50, and 100 kGy) while keeping the electron energy and treatment time fixed. The structure/property relationships of the prepared samples are studied using various characterization techniques such as DMA, DSC, SEM, and melt rheology. The results suggest that EIReP offers a novel route to prepare TPVs without any chemical crosslinking and coupling agents.

  相似文献   


8.
Conducting electrospun fiber mats based on PLA and PAni blends were obtained with average diameter values between 87 and 1 006 nm with PAni quantities from 0 to 5.6 wt.‐%. Structural characteristics of fiber mats were compared to cast films with the same amount of PAni and studied by SEM, SAXS, and AFM. Thermal properties of fiber mats and cast films were compared by DSC analyses. Mechanical properties of fiber mats were also evaluated. It was found that electrospinning process governs the crystal structure of the fibers and strongly affects fiber properties. New properties of PLA/PAni blends are reported due to the size fiber reduction.

  相似文献   


9.
Using the experience gained from the development of polymer–polymer nanofibrillar composites (NFCs), an attempt was undertaken to manufacture PET single polymer nanofibrillar composites. For this purpose polypropylene (PP) was removed by selective extraction from a knitted textile manufactured with PP/PET (80:20 by wt) blend. The remaining PET nanofibrillar textile was then sandwiched between lower‐melting PET films and compression molded at 120 °C. The obtained PET single polymer NFCs comprised PET nanofibrils as reinforcement and showed an improvement in the tensile strength and modulus of 37–100 and 40–140%, respectively (depending on the annealing temperature after compression molding and the test direction) compared to those of the starting isotropic matrix film.

  相似文献   


10.
We report a ternary system of poly(styrene‐co‐acrylonitrile) (SAN), poly(vinyl chloride) (PVC), and multi‐walled carbon nanotube (MWCNT) composites prepared by both a solution blending method and the SOAM. The MWCNT content in the composites was optimized by both TGA and mechanical characterization of binary mixtures of SAN/MWCNT and PVC/MWCNT composites. The dispersion of MWCNTs in the miscible SAN/PVC blends was characterized by FT‐Raman spectroscopy, FE‐SEM, and FE‐TEM. The distribution of MWCNTs in the SAN/PVC blends was examined in terms of their wetting coefficients and minimization of the interfacial energy. Composites prepared using the SOAM method showed superior physical properties to the SAN/PVC blends and SAN/PVC/MWCNT composites prepared using the solution blending method.

  相似文献   


11.
The effectiveness and efficiency of an ethylene/acrylate copolymer in toughening semicrystalline and amorphous PLA through melt blending is studied. The mechanical properties, phase morphologies, miscibilities, and toughening mechanisms of the blends are assessed. The ethylene/acrylate impact modifier effectively improved the impact strength of the blends, regardless of the PLA type. The semicrystalline blends showed decreased tensile strength and modulus with increased impact modifier content. In contrast, the ductility, elongation at break, and energy to break increased significantly. The relatively low BDT temperature obtained for the PLA blends renders the ethylene/acrylate copolymer impact modifier a desirable additive to toughen PLA for use in cold temperatures.

  相似文献   


12.
The spherulitic morphology and growth, overall isothermal crystallization kinetics and hydrophilicity of PBSU were investigated by POM, DSC and WCA measurements in its miscible blends with PEO. The Hoffman‐Lauritzen equation was employed to analyze the spherulitic growth rates of neat and blended PBSU, which show a crystallization regime transition between regime II and III. The overall crystallization rates of PBSU decreased with increasing crystallization temperature, regardless of blend composition, while the crystallization mechanism does not change. A significant improvement in the hydrophilicity of PBSU can be achieved by blending with different weight fractions of PEO, which may be essential for the practical application of PBSU/PEO blends.

  相似文献   


13.
The effect of OMLS incorporation on the thermal properties of PET/LCP blends is studied. Pure and OMLS‐modified PET/LCP blends were prepared by melt‐extrusion using twin‐screw extruder. The morphological analyses of PET/LCP blends show that OMLS addition enhances the phase‐separated structure of the pure blend. A detailed study on the thermal properties of the pure and OMLS‐modified PET/LCP blends were carried out by means of DSC in both conventional and modulation modes. Results show a complex melting behaviour comprises of successive melting and re‐crystallisation. Finally, non‐isothermal crystal‐growth kinetics of pure and OMLS‐modified blends were investigated.

  相似文献   


14.
Two sets of emulsion particles have been synthesized. In the first set, surfactant free emulsion was used to directly synthesize PS‐PNIPAAM copolymer particles. In the second set, polystyrene particles with an ATRP initiator shell were first synthesized and subsequently grafted with PNIPAAM brushes. Swelling/deswelling behavior of both sets of particles was studied with respect to temperature and time. Monoliths with two different porosities were also formed by grafting and crosslinking of PNIPAAM chains on the aggregated particles and characterized. In all cases, swelling kinetics is sufficiently fast to use these supports for separation driven by temperature changes only. However, hindrance and cross‐linking is sensibly reducing the material performance.

  相似文献   


15.
The chemical modification by melt‐mixing of an EBAGMA terpolymer with LDPE and PET was investigated with the aim to use these EBAGMA/LDPE and EBAGMA/PET blends (in equal weight quantities) as compatibilizer master batches to improve the compatibility of the LDPE/PET system. It is shown that when the EBAGMA terpolymer is melt blended with LDPE, almost 40% of the initial amount of EBAGMA is linked to the LDPE backbone. In contrast, in the case of EBAGMA/PET, FT‐IR spectra indicate the total reactivity between the two components through the reaction of the epoxy group of EBAGMA with the PET terminal groups. SEM analysis shows that both master batches present two well‐interconnected phases.

  相似文献   


16.
A robust method to prepare hydrogels with high mechanical strength is presented. Core/shell nanospheres with derivatizable allyl groups in the shell were first prepared. Starch‐based nanospheres were used as crosslinker to prepare polyacrylamide hydrogels. The starch‐based nanospheres were bridged by acrylamide to form crosslink points in the hydrogel network. They possess an extremely high mechanical strength. The results show that starch‐based nanosphere hydrogels can sustain strengths of 10.34 MPa, which is 60 times greater than for a normal hydrogel. The mechanical properties of SNH can be tailored by varying the content of SN. This approach offered a new way of making functional hydrogel with biodegradable component as a substitute for tissue.

  相似文献   


17.
Fully exfoliated PS/clay nanocomposites were prepared via FRP in dispersion. Na‐MMT clay was pre‐modified using MPTMS before being used in a dispersion polymerization process. The objective of this study was to determine the impact of the clay concentrations on the monomer conversion, the polymer molecular weight, and the morphology and thermal stability of the nanocomposites prepared via dispersion polymerization. DLS and SEM revealed that the particle size decreased and became more uniformly distributed with increasing clay loading. XRD and TEM revealed that nanocomposites at low clay loading yielded exfoliated structures, while intercalated structures were obtained at higher clay loading.

  相似文献   


18.
This review reports on recent advances in the design of biodegradable polymers built from petroleum and renewable resources using reactive extrusion processing. Reactive extrusion represents a unique tool to manufacture biodegradable polymers upon different types of reactive modification in a cost‐effective way. Partially based on our ongoing research, ring‐opening polymerization of biodegradable polyesters will be approached as well as the chemical modification of biodegradable polymers, particularly natural polymers. The development of environmentally friendly polymer blends as well as (nano)composites from natural polymers, including natural fibers and nanoclays, through reactive extrusion, as an efficient way to improve the interfacial adhesion between these components, will be also discussed.

  相似文献   


19.
A composite of boehmite alumina nanoparticles and a PP/PA12 blend is prepared. WAXD and SEM suggest that a low filler loading enhances the coalescence of PA12, whereas a higher loading reverses the situation. DSC, DMA and TGA reveal that the final properties of the blend composites such as crystallization temperatures, flexural storage moduli, or thermal degradation temperatures improve with increasing nanoparticle loading. The data are compared with the neat polymers and the compatibilized blend, and the results show that the compatibility increases only at high nanoparticle loading, and most of the thermal properties improve with increasing nanoparticle content in the blends. The presence of interfacial interactions between the polymer matrices and the filler was confirmed via FTIR.

  相似文献   


20.
The acetylation of cellulose in ionic liquids (ILs) and the subsequent dry/wet spinning of these processing solutions were investigated. The homogeneous acetylation in ILs was carried out using different molar ratios of acetic anhydride to the anhydroglucose unit (AGU). The obtained solutions of cellulose acetates were characterised analytically by means of rheological methods. DS and of the prepared cellulose acetates were determined. Furthermore the processing solutions of the acetylation were shaped by means of a dry/wet spinning process to fibres with varied properties. The resulting fibre properties were discussed in consideration of the DS and in comparison with unsubstituted cellulose fibres.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号