首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vacuum plasma spray technique (VPS) has been successfully employed to coat Ti-6A1-4V substrates with bioactive glasses and Ti-particle/glass-ceramic matrix biocomposites. The composites were prepared by sintering, under an Ar flow, green bars of bioactive glass powders and 30% volume Ti particles. The bioactive glasses have the two following compositions: SCB (48.8SiO2−48.8CaO−2.4B2O3) and TSCB (46.6SiO2−48.7CaO−2.5B2O3−2.2TiO2) (mol%). The VPS bioactive coatings were characterized by means of scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and mechanical tests (Vickers indentations and tensile and shear tests). Their bioactivity was tested by soaking the samples in a simulated body fluid (SBF) and by analyzing the growth of hydroxylapatite (HA) by SEM, EDS, and XRD. Leaching tests of Ca, Si, and P in SBF were made by inductively coupled plasma-atomic emission spectroscopy (ICP-AES, Perkin-Elmer 5000) to study the in vitro bioactivity of the samples versus time. Each coating was found to be bioactive and well bonded to the substrate; the composites showed better mechanical properties than the pure glass matrices and the hydroxylapatite coatings deposited by the same VPS technique.  相似文献   

2.
A series of novel zinc oxide (ZnO) containing bioactive glass compositions in SiO2-Na2O-CaO-P2O5 system and composite with hydroxyapatite (HAp) nano-particles were developed and applied as coating on Ti-6Al-4V substrates. The bioactive glasses and their composites were also processed to yield dense scaffolds, porous scaffolds and porous bone filler materials. The coating materials and the coatings were characterized and evaluated by different in vitro techniques to establish their superior mechanical properties. The cytotoxicity test of the coating material, porous and dense scaffolds and coated specimens showed non-cytotoxicity, biocompatibility and promising in vitro bioactivity for all tested samples. The dissolution behaviour studies of the bioactive glasses and the composites in simulated body fluid showed promising in vitro release pattern and bioactivity for all tested samples. Addition of nanosized HAp improves mechanical properties of the bioactive glass coating without affecting the in vitro bioactivity.  相似文献   

3.
Abstract

Two alginate (Alg) based composite coatings on stainless steel AISI 316L substrates, one containing titania nanoparticles (n-TiO2) and another one a mixture (50/50 wt-%) of n-TiO2 and bioactive glass (BG), intended for biomedical applications, were developed by electrophoretic deposition (EPD) from ethanol/water suspensions. Different n-TiO2 (2–10 g L?1) and BG (1–5 g L?1) contents were studied for a fixed alginate concentration (2 g L?1), and the properties of the electrophoretically obtained coatings were characterised. Coatings with high ceramic content (up to 67 vol.-%) were obtained. The presence of BG particles improves the mechanical properties of the coatings by increasing the adhesion to the substrate and also accelerates the formation of hydroxyapatite after immersion of the coatings in simulated body fluid. The electrochemical behaviour of the coated substrates, evaluated by polarisation curves in Dulbecco’s modified eagle medium at 37°C, confirmed the corrosion protection function of the novel EPD coatings. The present polymer–ceramic composite coatings belong to an emerging family of bioactive, compliant coatings that are promising for a range of biomedical applications.  相似文献   

4.
Some ceramics have the ability to form direct bonds with surrounding tissues when implanted in the body. Among bioactive ceramics, the apatite/wollastonite (A/W) glass–ceramic, containing apatite and wollastonite crystals in the glassy matrix, has been largely studied because of good bioactivity and used in some fields of medicine, especially in orthopaedics and dentistry. However, medical applications of bioceramics are limited to non-load bearing applications because of their poor mechanical properties. In this study, A/W powders, obtained from industrial and high grade quality raw materials, were thermally sprayed by APS (atmospheric plasma spraying) on Ti–6Al–4V substrates, in order to combine the good bioactivity of the bioceramic and the good mechanical strength of the titanium alloy base material. The microstructure and the resulting properties were evaluated depending on processing parameters and post-processing thermal treatments. The morphology and the microstructure of the coatings were observed by SEM and the phase composition was examined by X-ray diffraction. The bioactivity of the coatings was evaluated by soaking the samples in a simulated body fluid (SBF) for 1, 2 and 5 weeks. The bioactive behaviour was then correlated with the thermal treatments and the presence of impurities (in particular Al2O3) in the coatings.  相似文献   

5.
Titanium and its alloys are widely used as materials for implants, owing to their corrosion resistance, mechanical properties and excellent biocompatibility. However, clinical experience has shown that they are susceptible to localised corrosion in the human body causing the release of metal ions into the tissues surrounding the implants. Several incidences of clinical failures of such devices have demanded the application of biocompatible and corrosion resistant coatings and surface modification of the alloys. Coating metallic implants with bioactive materials is necessary to establish good interfacial bonds between the metal substrate and the bone. Hence, this work aimed at developing a bioglass-apatite (BG-HAP) graded coating on Ti6Al4V titanium alloy through electrophoretic deposition (EPD) technique. The coatings were characterized for their properties such as structural, electrochemical and mechanical stability. The electrochemical corrosion parameters such as corrosion potential (Ecorr) (open circuit potential) and corrosion current density (Icorr) evaluated in simulated body fluid (SBF) have shown significant shifts towards noble direction for the graded bioglass-apatite coated specimens in comparison with uncoated Ti6Al4V alloy. Electrochemical impedance spectroscopic investigations revealed higher polarisation resistance and lower capacitance values for the coated specimens, evidencing the stable nature of the formed coatings. The results obtained in the present work demonstrate the suitability of the electrophoretic technique for the preparation of graded coating on Ti6Al4V substrates.  相似文献   

6.
The paper reports the first attempt at employing the innovative high-velocity suspension flame spraying (HVSFS) technique in order to deposit bioactive glass coatings. Fine (micrometric) glass particles having a composition similar to that of the A–W (apatite–wollastonite) bioactive glass–ceramic as proposed by Kokubo were dispersed into a 50% water + 50% isopropanol solvent mixture and the resulting suspension (containing 20 wt.% glass powder) was thermally sprayed onto Ti plates using a modified high velocity oxy-fuel torch.Each torch pass produces a dense coating layer, featuring strong cohesion between lamellae thanks to viscous flow sintering along the interlamellar boundary. However, some porosity exists between different layers deposited during successive torch passes.In vitro bioactivity tests indicate that the coatings interact remarkably with the simulated body fluid (SBF), developing a thick silica-rich layer containing hydroxyapatite crystals.  相似文献   

7.
Alumina–zirconia nanostructured composites (ZrO2 addition by 20 wt%) were prepared using combined gelation–precipitation process. A modified sol–gel process has been developed to prepare nano structured spinel [MgAl2O4], Al2O3, ZrO2 and their composite materials. This process is useful in retaining tetragonal phase of zirconia at room temperature, which provides transformation toughening in the nano composites. Dried gels powders were calcined up to 1250 °C. Similarly, hydroxyapatite powders were produced by wet-chemical method and calcined at different temperatures. All the dried gel and calcined powders were characterized by using X-ray diffraction, DTA/TGA and SEM. Samples were prepared by uniaxial pressing the composites powders using ZTA, HAp, MgF2 and CaF2 in different ratio. Incorporation of CaF2 and MgF2 as a source for fluorine was also done to improve the sinterability of composites. The samples were sintered at 1400 °C for three hours. Densification and mechanical behaviour of sintered samples were observed. Bioactivities of all compositions were tested using SBF solution and then characterizing by FTIR. The main objective of work was to dope ZTA nano composites with HAp and fluoride compounds to obtain better sinterability at lower temperatures. Then evaluate the obtained ZTA based bioactive composite ceramics that have high mechanical strengths. This study verifies the bioactivities of HAp-added ZTA composites.  相似文献   

8.
Ti–Ca–P bioceramic composites for load bearing implants developed by a new powder metallurgy processing technique were studied for their electrochemical corrosion properties. For determining corrosion behavior of such composites having in situ formed bioactive Ca–P phases, potentiodynamic and studies were conducted in simulated body fluid namely Hank's balanced salt solution. Potentiodynamic polarization tests showed no evidence of pitting corrosion. Corrosion potentials (−0.27 to −0.53 V) and corrosion rates (0.17–4.46 mills per year) of Ti–Ca–P bioceramic composite samples were superior to earlier reported results for coated Ti implants due to the formation of passive layer of bone-like calcium phosphate on the sample surface.  相似文献   

9.
The effects of plasma gas composition on the bond-strength of HA/Ti composite coatings were investigated. HA/Ti composite coatings were deposited on titanium substrates by a radio-frequency (rf) thermal plasma spraying method with input powers of 10–30 kW. The ratio of the HA and Ti powders supplied into the plasma was precisely controlled by two microfeeders so as to change the coating's composition from Ti-rich at the bottom to HA-rich at its upper layer. The bond (tensile) strength of the obtained HA/Ti composite coatings was 40–65 MPa when sprayed with plasma gas containing N2 (i.e., Ar–N2). On the other hand, HA/Ti composite coatings prepared with plasma gas containing O2 (i.e., Ar–O2) had significantly lower bond strength (under 30 MPa). XRD patterns of Ti coatings without HA showed that titanium nitride and titanium dioxide formed, respectively, on titanium deposits sprayed with Ar–N2 and Ar–O2 plasma. Scanning electron microscopic (SEM) observation showed an acicular texture on the Ti deposits prepared with Ar–N2 plasma. SEM observations implied that, when sprayed with Ar–O2 plasma, a thin TiO2 layer formed at the interfaces between the Ti splats in the deposits.  相似文献   

10.
The fixation of bone replacement implants to the hosting tissue can be improved if the implants have a bioactive surface that can precipitate hydroxyapatite in vivo. Titanium alloys, despite their desirable mechanical and nontoxic properties, are not bioactive and do not bond directly to the bone. One of the ways to change a bioinert metallic surface such as a titanium alloy is to coat it with a bioactive material. This work presents the microstructural and stress–corrosion cracking characterization of two glass coatings on Ti6Al4V with different SiO2 contents (61% and 64%). These coatings belong to the SiO2–CaO–MgO–Na2O–K2O–P2O5 system and they were obtained by a simple enamelling technique. They will be used as the first layer of a bioactive multilayer system which will have an outer layer with a lower SiO2 content in order to ensure the surface bioactivity. Microstructural characterization performed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) shows that the coating porosity is clearly influenced by the firing time because of the longer extension of the reaction between Ti and SiO2. The X-ray diffraction (XRD) integration method shows that the amount of crystalline phase (2.4CaO 0.6Na2O P2O5) percentage is between 3 vol.% and 16 vol.%. After acid etching, a microstructure with clear boundaries is observed which is the result of the sintered glass particles separation. Stress–corrosion cracking was evaluated using Vickers and Hertzian (spherical) indentation, showing that both coatings are sensitive to subcritical crack growth, and that the coating with the lower silica content is more sensitive to stress–corrosion cracking. These two results are related with the larger residual stresses due to the thermal expansion mismatch. Finally, the stress–corrosion ring cracking behavior by Hertzian indentation is rationalized from the linear-elastic fracture mechanics framework.  相似文献   

11.
Due to its excellent bioactivity, bioactive glass (BG) is suitable for use as bone graft substitutes in biomedical applications. In this study, carbon nanotubes (CNT-COOH) served as templates for depositing bioactive glass based on 60SiO2–36CaO–4P2O5 wt.% were synthesized via the solgel process. The BG and BG/CNT-COOH composites were treated at 300, 500, 700, and 900°C; their properties were also examined by X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. The experimental results showed that BG/CNT-COOH composites treated at 500 and 700°C were amorphous and contained silicate nanocrystals. By altering precursor concentration, bioactive glass of various thicknesses was successfully solgel coated on CNT-COOH. Immersion of the BG/CNT-COOH composites in simulated body fluid solution and MG-63 cell culture assessment showed the 500°C treated BG/CNT-COOH exhibits excellent bioactivity.  相似文献   

12.
Ba–B–Si glass was added to Ba–Nd–Sm–Bi–Ti–O (BRT114) microwave dielectric material for LTCC applications. Conventional one-step processing method for preparing glass-BRT114 composite materials yields low dielectric constant, since the glass was easy to react with BRT114 and forms a low dielectric constant phase, Ba3B6Si2O16. A large proportion of pores appeared. The nature of glass, whether it is sol-gel derived or fused, shows marked influence on the microstructure and microwave dielectric properties of the composites. A two-step process containing precoating the BRT114 powders with a thin layer of glass, followed by conventional samples preparation process, tremendously improved the densification behaviour of the material. The formation of pores and interactions between glass and BRT114 was greatly suppressed such that materials with high dielectric constant (εr=40) were achieved by sintering 9 wt.% glass-containing composite at 950 °C for 2.5 h.  相似文献   

13.
Ni–W–TiO2 nanocomposite coatings have been obtained on mild steel surface by direct current (DC) and pulse current (PC) electrodeposition from Watts bath containing an ammonical citrate complexing agent. The morphology of the coatings was explored by scanning electron microscopy (SEM), atomic force microscopy (AFM) and the composition of the electrodeposits was analyzed by energy dispersive X-ray analysis (EDX). Surface morphology studies revealed that Ni–W alloy surface was covered by long needle like crystals and Ni–W–TiO2 composite coatings with smaller spherical sized grains. The coated surface contained 25.55% W and 5.55% Ti. XRD studies revealed that (111) plane was predominant in both Ni–W alloy deposits and Ni–W–TiO2 composite coatings. The patterns of the electrodeposits confirmed only fcc frame work structure. Microhardness values increased with TiO2 addition in the alloy. The corrosion resistance of Ni–W alloy deposit and TiO2 incorporated coatings was evaluated by Potentiodynamic polarization studies in 3.5% NaCl solutions. Corrosion current densities decreased with TiO2 inclusion in the alloy deposit. Electrochemical impedance studies revealed that the charge transfer resistance increased with TiO2 inclusion in the alloy deposits while the double layer capacitance decreased. The PC composites coatings offer uniform surface, high microhardness and enhanced corrosion resistance than DC composites coatings.  相似文献   

14.
Composites of polydimethylsiloxane (PDMS) rubber modified by three kinds of polyhedral oligomeric silsesquioxanes (POSSs) as well as fumed silica were prepared through solution blending and then open two‐roll mill blending with curing agent. Subsequently, the influences of POSS on mechanical and thermal properties of the resulting composites were investigated in detail. The addition of POSS significantly enhanced the tensile strength and elongation at break of the composite but lowered the tensile modulus, which could be ascribed to the interruption of silica–silica and silica–PDMS interactions. Octamethylsilsesquioxane (OMS)/silica/PDMS and octaphenylsilsesquioxane (OPS)/silica/PDMS composites did not show desirable mechanical and thermal properties. Nevertheless, heptaphenylvinylsilsesquioxane (VPS)/silica/PDMS composite with 5 wt % VPS exhibited enhanced glass transition temperature (Tg), mechanical properties, and thermal stability. Further studies revealed that more VPS unfavorably affected properties of the composite. Scanning electron microscope and X‐ray diffraction demonstrated that owing to the grafting reaction, 5 wt % VPS in the rubber matrix could form microcrystal domains the most effectively. Thus, the improved mechanical properties and thermal stability just resulted from the the formation of microcrystal domains and the increase in stiffness of PDMS chains because of the graft of VPS onto PDMS. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42173.  相似文献   

15.
《Ceramics International》2022,48(7):9579-9594
In the field of orthopaedic implants, post-surgery infections and biocompatibility are the most challenging obstacles. Sustained and controlled antibiotic release is a key factor in novel drug delivery systems. A novel drug delivery system combined with vaterite microsphere, graphite oxide (GO), reduced graphene oxide (rGO) incorporated in a polycaprolactone (PCL) matrix on TiO2 nanotube coated Ti (TNT-Ti) is established. Anodization was employed to develop TiO2 nanotubular arrays on Ti. Ciprofloxacin hydrochloride (CPF–HCl) loaded vaterite microspheres were synthesized by in situ precipitation method. Deposition of vaterite/PCL, vaterite-GO/PCL and vaterite-rGO/PCL composite coating on TNT-Ti was carried out by dip coating method. The composite coatings were characterized for their phase content, morphological features and functional groups. Among the three types of composite coatings, vaterite-rGO/PCL composite coating is found to be capable of encapsulating CPF-HCl to a level of 75.14 μg. The drug release profile of CPF-HCl from the vaterite-rGO/PCL composite coating exhibits a controlled release amounting to only 35.02 % of release at the end of 120 h. The vaterite-rGO/PCL composite coating exhibits a low dissolution rate and possesses adequate bioactivity in HBSS and SBF solutions at 37 °C for 14 and 10 days, respectively. The in situ loaded CPF-HCL drug on vaterite microspheres, PCL polymer matrix and GO/rGO nanofillers does not affect the cytocompatibility and all the composite coatings supported cell viability and proliferation. The ability of vaterite-rGO/PCL composite coating to provide a slow and steady release of antibiotics with sufficient bioactivity and biocompatibility at the tissue implant interface makes it a promising for osteomyelitis infection of bone tissue implant materials.  相似文献   

16.
Thin organic coatings directly on steel sheets provide excellent barrier protection in saline environment and meet deformability demands, but fail in providing active corrosion protection. We have put an effort to solve this problem by formulating composite coatings using in-situ generation of metal oxide nanoparticles (NPs) in the polymer matrix. Here we present a new synthesis method of high performance polyetherimide composite with TiO2, MgO, and Al2O3 nanoparticles and their application for anti-corrosion coatings in saline environment. We observed that in-situ synthesis of these metal oxide NPs in the polymer curing process leads to evenly distribution and uniform size of nanoparticles. Thermo-mechanical property was analyzed for these three kinds of free-standing composite film to assess elasto-plastic behaviour and compared to mother polymer film. Results indicated that thermal stability and elastic behaviour of composites film are not affected to the great extent by the presence of NPs. The potentiodynamic and the electrochemical impedance studies on these composite coated steel panels were carried out to identify active–passive behaviour. Results showed active corrosion protection from nanocomposite coating based on TiO2 and barrier protection was noticed from nanocomposite coating based on MgO and Al2O3.  相似文献   

17.
Porous 45S5 Bioglass®-based glass–ceramic scaffolds with high porosity (96%) and interconnected pore structure (average pore size 300 μm) were prepared by foam replication method. In order to improve the mechanical properties and to incorporate a drug release function, the scaffolds were coated with a drug loaded solution, consisting of PHBV and vancomycin. The mechanical properties of the scaffolds were significantly improved by the PHBV coating. The bioactivity of scaffolds upon immersion in SBF was maintained in PHBV coated scaffolds although the formation of hydroxyapatite was slightly retarded by the presence of the coating. The encapsulated drug in coated scaffolds was released in a sustained manner (99.9% in 6 days) as compared to the rapid release (99.5% in 3 days) of drug directly adsorbed on the uncoated scaffolds. The obtained drug loaded and bioactive composite scaffolds represent promising candidates for bone tissue engineering applications.  相似文献   

18.
《Ceramics International》2022,48(8):10979-10989
Osteoconductive, osteoinductive, anti-infection, and controlled ionic release properties are crucial for the long-term clinical success of orthopedic and dental metallic implants. In this study, we have successfully synthesized apatite chemical structure mimic Sr5(PO4)2SiO4 (SPS) nanopowder by sol-gel method to be used as a novel bioactive ceramics coatings on medical-grade titanium alloy by plasma-spray deposition technique. The deposited SPS coatings were analytically characterized by XRD and SEM-EDS analysis and confirmed that the coating possessed a pure crystalline phase of SPS without any other secondary phases, and exhibited a sharp needle-like morphology with the existence of Sr, P, O, Si elements. The cross-sectional view proved that the deposition of dense SPS layer with a thickness of 116 μm. The in vitro ionic dissolution behavior of SPS coatings was detected by ICP-OES analysis and confirmed their controlled releasing profile of ions such as Sr (120–55 ppm) and Si (0.14–9.86 ppm). In vitro biomineralization study demonstrated that the SPS coatings were remarkably encouraged the ball likes apatite crystals growth on their surface with a Ca/P ratio (1.677) similar to natural bone minerals. The SPS coatings exhibited notable cellular interactions with human umbilical card-derived mesenchymal stem cells (HUMSCs) in terms of cell proliferation, early-stage differentiation, and calcium nodule accumulation in ECM, also the osteogenic differentiation was found to be prominent for SPS coated Ti64 than sandblasted Ti64. Furthermore, the angiogenic property of SPS coated Ti64 was evaluated by Human umbilical vein endothelial cells (HUVECs) and confirmed their tremendous cell viability with non-toxicity and nominal angiogenic differentiation. Therefore, our study proved that the apatite-inspired SPS bioactive ceramics coatings could improve the biofunctional activities of orthopedic and dental implants for their better clinical success.  相似文献   

19.
J. Seo  S. Kim  S. Samal 《应用陶瓷进展》2014,113(6):334-340
Abstract

Variation in the viscous flow behaviour, nature and extent of glass fluidity in glass/filler composites are addressed with respect to various factors such as filler type, content, size, density and migration distance. The characterisation of a glass (Bi2O3–B2O3–ZnO) composite consisting of two different fillers (cordierite and willemite) was determined using hot stage microscopy, a differential scanning calorimeter and a flow button test. The microstructure was analysed using a scanning electron microscope. The apparent viscosity of the glass composites increased on increasing concentration and density of the filler. The variation in the viscosity is due to the diffusion of the glass matrix through channels in the cordierite filler of the composite. Based on the calculated migration distance of the filler in the glass matrix, the present work suggests that the interfacial behaviour and the density of the filler play a significant role in determining the viscous flow of the glass composites.  相似文献   

20.
In this study, the effect of annealing temperature and alumina particles on micro-hardness, corrosion, wear, and friction of Ni-P-Al2O3 composites coating is studied. The electroless nickel composite coating with various alumina particle content is deposited on a mild steel substrate. The corrosion behaviour and tribological behaviour (wear and friction) of the composite coated samples are investigated and compared with Ni-P coated samples. The micro-hardness, wear resistance, and corrosion resistance of the composite coating improved significantly after heat treatment (400 °C) and in the presence of alumina particles. The composite coating deposited with alumina particle concentration of 10 g/L in an electroless bath and heat treated at 400 °C shows excellent results compared to Ni-P, as-deposited Ni-P-Al2O3 coating and coatings heat treated at different annealing temperature (200 °C, 300 °C, and 500 °C). Microstructure changes and composition of the composite coatings due to incorporation of alumina particles and heat treatment are studied with the help of SEM (scanning electron microscopy), EDX (energy dispersive X-ray analysis and XRD (X-ray diffraction analysis).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号