首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Ceramics International》2023,49(2):2183-2193
This work deals with the preparation of freeze-cast scaffolds using a bioactive glass from the SiO2–CaO–Na2O–P2O5–K2O–MgO system. This material could be sintered at lower temperatures (650 °C) than other variations of bioactive glasses, which is an important advantage in terms of energy and cost savings. This behavior represents a great advantage in terms of energy and cost savings. The freeze-casting step was conducted using water as a solvent and liquid nitrogen as a coolant. The prepared samples were examined according to their pore structure, thermal behavior, mechanical stability, and bioactivity. The glass transition temperature (Tg), crystallization onset temperature (Tx), and maximum crystallization temperature (Tc) evaluated for this bioactive glass were about 660 °C, 690 °C, and 705 °C. Consequently, the freeze-cast scaffolds could be sintered at 650 °C for 2–8 h, which favored viscous flow sintering without crystallization. Bioactivity assays were conducted by soaking the scaffolds in simulated body fluid for up to 21 days, showing that these materials present a bioactive behavior, inducing hydroxyapatite formation. These materials' mechanical properties and biocompatibility make them promising candidates for use in trabecular bone repair.  相似文献   

2.
Here we report on bulk Si–Al–O–C ceramics produced by pyrolysis of commercial poly(methylsilsesquioxane) precursors. Prior to the pyrolysis the precursors were cross-linked with a catalyst, or modified by the sol-gel-technique with an Al-containing alkoxide compound, namely alumatrane. This particular procedure yields amorphous ceramics with various compositions (Si1.00O1.60C0.80, Si1.00Al0.04O1.70C0.48, Si1.00Al0.07O1.80C0.49, and Si1.00Al0.11O1.90C0.49) after thermal decomposition at 1100 °C in Ar depending on the amount of Al-alkoxide used in the polymer reaction synthesis. The as-produced ceramics are amorphous and remain so up to 1300 °C. Phase separation accompanied by densification (1300–1500 °C) and formation of mullite at T > 1600 °C are the stages during heat-treatment. Bulk SiAlOC ceramics are characterized in terms of microstructure and crystallization in the temperature regime ranging from 1100 to 1700 °C. Aluminum-free SiOC forms SiC along with cracking of the bulk compacts. In contrast, the presence of Al in the SiOC matrix forms SiC and mullite and prevents micro cracking at elevated temperatures due to transient viscous sintering. The nano-crystals formed are embedded in an amorphous Si(Al)OC matrix in both cases. Potential application of polysiloxane derived SiOC ceramic in the field of ceramic micro electro mechanical systems (MEMS) is reported.  相似文献   

3.
Effect of Viscosity ratio (ηEPR/ηPP), propylene (C3) content of (ethylene-propylene copolymer (EPR)), and peroxide/coagent treatment on polypropylene (PP)/EPR (80/20 by weight) melt blends were studied in terms of morphological, rheological, thermal, and mechanical properties. As the viscosity ratio increases from approximately 0.8 to 1.2, domain size increased (submicron-1.5 μm), and the degree of supercooling (ΔT) for crystallization increased (37.4–47.8°C) due to the decreased crystallization temperature (Tcc, 122.2–110.8°C). This resulted in larger spherulite size and increased hardness, modulus, and yield strength. With high C3 EPR, total crystallinity (ΔHf) of PP decreased, together with the mechanical properties, except the impact strength. With peroxide/coagent treatment, the spherulite size significantly decreased. The notched Izod impact strength decreased with increasing viscosity ratio, but significantly increased with high C3 EPR and with peroxide/coagent treatments. The results were interpreted in terms of domain size and shape, chemical affinity between PP and EPR, copolymer formation, and main chain scission of PP. © 1996 John Wiley & Sons, Inc.  相似文献   

4.
《Ceramics International》2016,42(5):5778-5784
Bi2Sr2Ca1Cu2O8+∂ thin films were deposited on MgO (100) substrates by pulsed laser deposition (PLD). The effects of post-annealing time on the phase formation, the structural and superconducting properties of the films have been investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), temperature dependent resistivity (R–T), atomic force microscopy (AFM), and DC magnetization measurements. The films deposited at 600 °C were post-annealed in an atmosphere of a gas mixture of Ar (93%) and O2 (7%), at 860 °C for 10, 30, and 60 min. All films have demonstrated a mainly single phase of 2212 with a high crystallinity (FWHM≈0.159°) and c-axis oriented. The critical temperature, TC, of the films annealed for 10, 30, and 60 min were obtained as 77, 78, and 78 K, respectively. The highest critical current density, JC, was calculated as 3.34×107 A/cm2 for the film annealed at 860 °C for 30 min at 10 K.  相似文献   

5.
Glass–ceramics based on the CaO–MgO–SiO2 system with limited amount of additives (B2O3, P2O5, Na2O and CaF2) were prepared. All the investigated compositions were melted at 1400 °C for 1 h and quenched in air or water to obtain transparent bulk or frit glass, respectively. Raman spectroscopy revealed that the main constituents of the glass network are the silicates Q1 and Q2 units. Scanning electron microscopy (SEM) analysis confirmed liquid–liquid phase separation and that the glasses are prone to surface crystallization. Glass–ceramics were produced via sintering and crystallization of glass-powder compacts made of milled glass-frit (mean particle size 11–15 μm). Densification started at 620–625 °C and was almost complete at 700 °C. Crystallization occurred at temperatures >700 °C. Highly dense and crystalline materials, predominantly composed of diopisde and wollastonite together with small amounts of akermanite and residual glassy phase, were obtained after heat treatment at 750 °C and 800 °C. The glass–ceramics prepared at 800 °C exhibited bending strength of 116–141 MPa, Vickers microhardness of 4.53–4.65 GPa and thermal expansion coefficient (100–500 °C) of 9.4–10.8 × 10−6 K−1.  相似文献   

6.
The non-isothermal crystallization behaviors of isotactic polypropylene (iPP) under ambient N2 and compressed CO2 (5–50 bar) at cooling rates of 0.2–5.0 °C/min were carefully studied using high-pressure differential scanning calorimeter. The presence of compressed CO2 had strong plasticization effect on the iPP matrix and retarded the formation of critical size nuclei, which effectively postponed the crystallization peak to lower temperature region. On the basis of these findings, a new foaming strategy was utilized to fabricate iPP foams using the ordinary unmodified linear iPP with supercritical CO2 as the foaming agent. The foaming temperature range of this strategy was determined to be as wide as 40 °C and the upper and lower temperature limits were 155 and 105 °C, which were determined by the melt strength and crystallization temperature of the iPP specimen under supercritical CO2, respectively. Due to the acute depression of CO2 solubility in the iPP matrix during the foaming process, the iPP foams with the bi-modal cell structure were fabricated.  相似文献   

7.
High-molecular-weight poly(l-lactic acid) (PLLA) and poly(d-lactic acid) (PDLA) are blended at different ratios and their crystallization behavior was investigated. Solely homo-crystallites mixtures of PLLA and PDLA were synchronously and separately formed during isothermal crystallization in the temperature (Tc) range of 90–130 °C, irrespective of blending ratio, whereas in addition to homo-crystallites, stereocomplex crystallites were formed in the equimolar blends at Tc above 150 and 160 °C. Interestingly, in isothermal crystallization at Tc = 130 °C, the spherulite morphology of blends became disordered, the periodical extinction (periodical twisting of lamellae) in spherulites disappeared, and the radial growth rate of spherulite (G) of the blends was reduced by the synchronous and separate crystallization of PLLA and PDLA and the coexistence of PLLA and PDLA homo-crystallites. However, the interplane distance (d), the crystallinity (Xc), the transition crystallization temperature (Tc) from α′-form to α-form, the alternately stacked structure of the crystalline and amorphous layers, and the nucleation mechanism were not altered by the synchronous and separate crystallization of PLLA and PDLA and the coexistence of PLLA and PDLA homo-crystallites. The unchanged d, Xc, transition Tc, long period of stacked lamellae, and nucleation mechanism strongly suggest that the chiral selection of PLLA or PDLA segments on the growth sites of PLLA or PDLA homo-crystallites to some extent was performed during solvent evaporation and this effect remained even after melting.  相似文献   

8.
《Ceramics International》2016,42(6):7001-7013
Dense (95–98.6%) bulk boron carbide prepared by Spark Plasma Sintering (SPS) in Ar or N2 atmospheres were subject to three-point flexural tests at room and at 1600 °C. Eight different consolidation conditions were used via SPS of commercially available B4C powder. Resulting specimens had similar grain size not exceeding 4 µm and room-temperature bending strength (σ25 °C) of 300–600 MPa, suggesting that difference in σ25 °C is due to development of secondary phases in monolithic boron carbide ceramics during SPS processing. To explain such difference the composition of boron carbide and secondary phases observed by XRD and Raman spectroscopy. The variation in intensity of the Raman peak at 490 cm−1 of boron carbide suggests modification of the boron carbide composition and a higher intensity correlates with a higher room-temperature bending strength (σ25 °C) and Vickers hardness (HV). Secondary phases can modify the level of mechanical characteristics within some general trends that are not dependent on additives (with some exceptions) or technologies. Namely, HV increases, σ25 °C decreases, and the ratio σ1600 °C/σ25 °C (σ1600 °C – bending strength at 1600 °C) is lower when fracture toughness (KIC) is higher. The ratio σ1600 °C25 °C shows two regions of low and high KIC delimited by KIC=4.1 MPa m0.5: in the low KIC region, boron carbide specimens are produced in nitrogen.  相似文献   

9.
《Ceramics International》2023,49(3):4872-4880
CaO–B2O3–SiO2–Ta2O5 (CBST) glass-ceramics, with different Ta2O5 content, (up to 6 mol%), have been prepared by using glass melt quenching followed by heat treatment between 800 and 880 °C. The Fourier Transform Infrared (FTIR) results showed that the stronger the attraction of Ta5+ to the oxygens in the BO33? and SiO32? structures, the more easily the B–O and Si–O bonds will be destroyed. The underlying reason is most probably the high field strength of Ta5+, which results in a weakening of the vibration intensities of the [BO3] and [SiO4] units. Moreover, the Differential Scanning Calorimetry (DSC) results showed that the softening point (Tg), crystallization starting temperature (Tc1), and exothermic crystallization peak temperature (Tp1), of the CaSiO3 phase, shifted to higher values with the addition of Ta2O5. Also, the crystallization activation energy (Ea) and the glass stability factor (ΔT) of the CaSiO3 phase increased, which indicated that the CaSiO3 phase of the glass became inhibited by the addition of Ta2O5. It was, thus, obvious that there was a need of glass characterization. The results of the crystallization kinetics showed that the critical cooling rate decreased with the addition of Ta2O5, which indicated that the viscosity of the system had increased. The CBST glass-ceramics, containing 1 mol% Ta2O5, that were sintered at 875 °C for 15 min showed excellent dielectric properties: εr = 6.22 and tanδ = 1.19 × 10?3 (1 MHz). To sum up, CaO–B2O3–SiO2–Ta2O5 glass-ceramics are potential low temperature co-fired ceramic substrate materials.  相似文献   

10.
Two types of Si3N4 fibers with different oxygen contents were annealed in a nitrogen atmosphere at 1500 °C for 1 h. After annealing, the fiber (SN-L) containing 0.5 wt% oxygen crystallized to α-Si3N4 but lost its strength, whereas the fiber (SN-H) containing 4.2 wt% oxygen was amorphous and retained 63.6% of its strength. The phase transition in these fibers was mainly influenced by the oxygen level. The lower oxygen content in the SN-L favored the precipitation of an almost stoichiometric composition of α-Si3N4 initially at ~1450 °C with an activation energy (Ea) of 663.357 kJ/mol. Nanopores existing naturally in the fiber promoted crystallization via heterogeneous nucleation. SN-H precipitated as an amorphous SiNxOy metaphase preferentially at ~1400 °C with an Ea of 440.434 kJ/mol, owing to the higher oxygen content approaching that of Si2N2O. SiNxOy inhibited the crystallization of α-Si3N4, making SN-H more thermally stable than SN-L at temperatures above 1500 °C.  相似文献   

11.
We developed a new Li2O–Al2O3–SiO2 (LAS) ultra‐low expansion glass‐ceramic by nonisothermal sintering with concurrent crystallization. The optimum sintering conditions were 30°C/min with a maximum temperature of 1000°C. The best sintered material reached 98% of the theoretical density of the parent glass and has an extremely low linear thermal expansion coefficient (0.02 × 10?6/°C) in the temperature range of 40°C–500°C, which is even lower than that of the commercial glass‐ceramic Ceran® that is produced by the traditional ceramization method. The sintered glass‐ceramic presents a four‐point bending strength of 92 ± 15 MPa, which is similar to that of Ceran® (98 ± 6 MPa), in spite of the 2% porosity. It is white opaque and does not have significant infrared transmission. The maximum use temperature is 600°C. It could thus be used on modern inductively heated cooktops.  相似文献   

12.
In this study, high-density La0.67Ca0.27Sr0.06MnO3 (LCSMO) ceramics were successfully obtained by sol-gel method followed by cold isostatic pressing (CIP) under 250 MPa. Effects of sintering temperature (TS, 1250 °C ≤ TS ≤ 1450 °C) on structure, surface chemical, electrical, and optical properties of as-obtained LCSMO ceramics were investigated by X-ray diffraction (XRD, BDX3200), X-ray photoemission spectroscopy (XPS, Thermo Fisher Scientific), a four-probe system (East changing ET9005), Fourier transform infrared spectrometry (FTIR, TENSOR 27), Raman microscopy (RENISHAW inVia) and UV–vis spectrophotometry (HITACHI U-4100), respectively. All prepared samples showed orthorhombic structure with Pnma space group. As TS increased, grain size gradually rose from 2.71 to 7.30 μm. XRD refinement, Raman, and FTIR all depicted constant of bond angle and length of Mn–O. Hence, variation in TS did not cause lattice distortion inside samples. The best electrical properties were obtained at 1450 °C, where resistivity (ρ) fell below 0.008 Ω cm and temperature coefficient of resistivity (TCR) reached 13.0% K?1 at 289.2 K (room temperature).It is worth noting that electrical performance was indeed improved due to high densities of samples under processing of CIP. Overall, the change in TS from 1250 to 1450 °C greatly influenced electrical behaviors but showed little effect on structural and optical properties of LCSMO ceramics.  相似文献   

13.
《Ceramics International》2022,48(15):21355-21361
In this study, a transparent and environmentally friendly Li2O–Al2O3–SiO2 (LAS) glass-ceramic was prepared by melt-quenching and two-step heat treatment. The influence of the substitution amount of ZrO2 by SnO2 on the crystallization, microstructure, transparency, and mechanical properties of LAS glass and glass-ceramics was investigated by means of differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Ultraviolet–visible Spectrophotometer, three-point bending strength test, and microhardness test. The results indicate that the main crystalline phase of LAS glass ceramics was a β-quartz solid solution when heat treated at 780 °C for 2 h and 870 °C for 1.5 h. When the substitution amount of ZrO2–SnO2 increased from 0.4 mol% to 2.5 mol%, the grain size and thermal expansion coefficient of LAS glass-ceramics first decreased and then increased, and the crystallinity first increased and then decreased. When the substitution amount of ZrO2–SnO2 was 0.8 mol%, the transparency of the LAS glass-ceramics was maximum, the bending strength was 96 MPa, and the Vickers hardness was 10.9 GPa.  相似文献   

14.
The solubility and diffusion coefficient of supercritical CO2 in polycarbonate (PC) were measured using a magnetic suspension balance at sorption temperatures that ranged from 75 to 175 °C and at sorption pressures as high as 20 MPa. Above certain threshold pressures, the solubility of CO2 decreased with time after showing a maximum value at a constant sorption temperature and pressure. This phenomenon indicated the crystallization of PC due to the plasticization effect of dissolved CO2. A thorough investigation into the dependence of sorption temperature and pressure on the crystallinity of PC showed that the crystallization of PC occurred when the difference between the sorption temperature and the depressed glass transition temperature exceeded 40 °C (T  Tg  40 °C). Furthermore, the crystallization rate of PC was determined according to Avrami's equation. The crystallization rate increased with the sorption pressure and was at its maximum at a certain temperature under a constant pressure.  相似文献   

15.
This study reports on the sintering behavior, crystallization process, and mechanical properties of novel glass-ceramics (CGs) produced by the glass powder compact consolidation method. Substitution of K2O for Na2O and MgO for CaO was attempted in the parent glasses belonging to Na2O-CaO-MgO-SiO2-P2O5-CaF2 system. Glass powder compacts were heat treated at various temperatures between 700°C and 900°C, taking under consideration the glass transition (Tg) and the crystallization peak (Tp) temperatures, which were experimentally determined for each investigated glass by thermal analysis (dilatometry and differential scanning calorimetry). The experimental results showed that sintering always preceded crystallization, regardless of the type of substitution. In the case of MgO substitution for CaO, crystallization was advanced in the range of 800°C-850°C, resulting in the formation of an assembly of crystalline phases, such as diopside, fluorapatite, and wollastonite. The substitution of K2O for Na2O increased the activation energy for crystallization, shifting crystallization process to a high temperature region, with the formation of alpha-potassium magnesium silicate, instead of wollastonite. The GCs produced had values of 22-31 GPa regarding the modulus of elasticity, 5.0-6.1 GPa concerning the microhardness, and 1.4-1.9 MPa⋅m0.5 as regard the fracture toughness, which are similar to those of the human jawbone.  相似文献   

16.
《Ceramics International》2022,48(24):36046-36055
In this paper, nanopowders based on iron-deficient Sc2-xFexO3 (x = 0.17–0.47) nanocrystals with bixbyite structure and crystallite size of 3.7–38.9 nm were successfully synthesized via solution combustion. Variable glycine-to-nitrate (G/N) ratio was the main controlling factor. A wide range of experimental and computational methods were used to analyze the impact of spatial constraints on the resulting solid-state products. It was found that solution combustion mode greatly influenced on the temperature and gaseous products in the reaction zone. Volume (G/N = 0.4–0.8, Tmax = 1179–1511 °C), self-propagating (G/N = 1.0–1.4, Tmax = 614–957 °C) or smoldering (G/N = 0.2, Tmax = 443 °C) combustion modes were acquired during the synthesis depending on G/N ratio. It was shown that the formation of impurity phases of am-Fe2O3 (Tmax < 850 °C), c-Fe3O4 (900 °C < Tmax < 1500 °C) or c-FeO (Tmax > 1500 °C) was possible, depending on the combustion temperature. Besides, the combustion mode affected the porous and surfacial structure of resulting mesoporous nanopowders – specific surface area and total pore volume varied in ranges of 1.7–82.8 m2/g and 0.0088–0.1538 cm3/g, consequently. Chemical composition and unit cell parameters of Sc2-xFexO3 showed the positive deviation from Vegard's law. The average sizes of the interpore thickness (h) depending on G/N ratio were found from values of specific surface area and pycnometric density of nanopowders, which made it possible to establish the presence of spatial constraints for the crystals' growth of Sc2-xFexO3 at h values below 10 nm. Analysis of aspect (h/D) ratio allowed to determine synthetic parameters which led to mono- or polycrystalline structure of interpore space in resulting Sc2-xFexO3-based nanopowders. The results and patterns established in this paper allowed to synthesize a new type of foam-like functional materials based on rare-earth ferrites.  相似文献   

17.
Mechanical properties of welded SiC-ZrB2 and SiC-ZrB2-ZrC ceramics were measured up to 1700 °C. Commercial powders were hot pressed, machined into coupons, and preheated to 1600 °C before joining the ceramics using either tungsten inert gas welding or plasma arc welding. Toughness of the parent materials was 3–4 MPa*m1/2 which decreased after welding to 2–2.5 MPa*m1/2. Strength of the SiC-ZrB2-ZrC parent material was ~700 MPa at 25 °C, ~300 MPa at 1700 °C, and retained 40–60% of this strength once welded. Strength of the SiC-ZrB2 parent material was ~600 MPa at 25 °C and 1700 °C and retained 20–30% of this strength once welded. Griffith analysis indicated that the strength in the parent materials was controlled by the size of SiC clusters while strength of welds was controlled by the size of pores in fusion zones. Therefore, removal of pores in produced fusion zones should be investigated to improve strength of future ceramic welds.  相似文献   

18.
In this study, the intermediate rare-earth oxide Gd2O3 (Gd) was substituted in different amounts (x = 0.2–2 mol%) for the formulation of BaTi1-xGdxO3-x/2 (BTGx) dielectric materials. The effect of B-site substitution was confirmed by the additional Raman active A1g octahedral peak at ~835cm-1 strengthened at x ≥ 0.4 mol%. Additionally, properties of 0.9BTG0.007-0.1BA dielectric ceramics were analysed based on the influence of various processing methods as a function of sintering temperature. The focal samples were labelled Method-A (direct-mix) and Method-B (indirect-mix). As the sintering temperature (1075–1200 °C) increased, the 1 kHz response of the ε–T curves of Method-A samples transformed from a single peak to broad-narrow double peaks of high dielectric loss tangent (tan δ). Nonetheless, samples of Method-B possessed a clearly defined transmission electron microscopy (TEM) core-shell structure, flattened double-peak ε-T curves, optimised dielectric properties (ε = ~1563–1851 and tan δ < 1.5% at room temperature), and a wide-ranging temperature behaviour that meets the X8R dielectric standards (ΔC/C25°C < ±15%). The maximum dielectric breakdown strength of Method-B samples reached ~131 kVcm, while the energy storage density was ~0.726 J/cm3 at a maximum efficiency of ~80% at 1100 °C. Thus, exhibiting good potentials for balancing temperature stability with energy storage applications.  相似文献   

19.
DTA, XRD and SEM investigations were conducted on the (1  x)TeO2xWO3 glasses (where x = 0.15, 0.25 and 0.3). Whereas the 0.75TeO2–0.25WO3 and 0.7TeO2–0.3WO3 glasses show no exothermic peaks, an indication of no crystallization in their glassy matrices, two crystallization peaks were observed on the DTA plot of the 0.85TeO2–0.15WO3 glass. On the basis of the XRD measurements of the 0.85TeO2–0.15WO3 glass samples heated to 510 °C and 550 °C (above the peak crystallization temperatures), α-TeO2 (paratellurite), γ-TeO2 and WO3 phases were detected in the sample heated to 510 °C and the α-TeO2 and WO3 phases were present in the sample heated to 550 °C. SEM micrographs taken from the 0.85TeO2–0.15WO3 glass heated to 510 °C showed that centrosymmetrical crystals were formed as a result of surface crystallization and were between 3 μm and 15 μm in width and 12 μm and 30 μm in length. On the other hand, SEM investigations of the 0.85TeO2–0.15WO3 glass heated to 550 °C revealed the evidence of bulk massive crystallization resulting in lamellar crystals between 1 μm and 3 μm in width and 5 μm and 30 μm in length. DTA analyses were carried out at different heating rates and the Avrami constants for the 0.85TeO2–0.15WO3 glass heated to 510 °C and 550 °C were calculated as 1.2 and 3.9, respectively. Using the modified Kissinger equation, activation energies for crystallization were determined as 265.5 kJ/mol and 258.6 kJ/mol for the 0.85TeO2–0.15WO3 glass heated to 510 °C and 550 °C, respectively.  相似文献   

20.
In this article, perovskite‐structured BiFeO3–Bi(Zn1/2Ti1/2)O3–PbTiO3 (BF–BZT–PT) ternary solid solutions were prepared with traditional solid‐state reaction method and demonstrated to exhibit a coexistent phase boundary (CPB) with Curie temperature of TC~700°C in the form of ceramics with microstructure grain size of several micron. It was found that those CPB ceramics fabricated with conventional electroceramic processing are mechanically and electrically robust and can be poled to set a high piezoelectricity for the ceramics prepared with multiple calcinations and sintering temperature around 750°C. A high piezoelectric property of TC = 560°C, d33 = 30 pC/N, ε33T0 = 302, and tanδ = 0.02 was obtained here for the CPB 0.53BF–0.15BZT–0.32PT ceramics with average grain size of about 0.3 μm. Primary experimental investigations found that the enhanced piezoelectric response and reduced ferroelectric Curie temperature are closely associated with the small grain size of microstructure feature, which induces lattice structural changes of increased amount ratio of rhombohedral‐to‐tetragonal phase accompanying with decreased tetragonality in the CPB ceramics. Taking advantage of structural phase boundary feature like the Pb(Zr,Ti)O3 systems, through adjusting composition and microstructure grain size, the CPB BF–BZT–PT ceramics is a potential candidate to exhibit better piezoelectric properties than the commercial K‐15 Aurivillius‐type bismuth titanate ceramics. Our essay is anticipated to excite new designs of high–temperature, high–performance, perovskite‐structured, ferroelectric piezoceramics and extend their application fields of piezoelectric transducers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号