首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The effects of fructooligosaccharide (FOS) and garlic on the formation of 15 heterocyclic amines (HCAs) were evaluated in fried beef patties. The HCAs were extracted from the fried meat samples and purified using a solid-phase extraction method and then analyzed on a liquid chromatography-mass spectrometry. Among the 15 HCAs, 3-amino-1, 4-dimethyl-5H-pyrido-[4,3-b]indole (Trp-P-1), 3-amino-1-methyl-5H-pyrido [4,3-b]indole (Trp-P-2), 2-amino-6-methyldipyrido [1,2-a:3′,2′-d]imidazole (Glu-P-1), 2-aminodipyrido [1,2-a:3′,2′-d]imidazole (Glu-P-2), 9H-pyrido [3,4-b]indole (norharman), 1-methyl-9H-pyrido [3,4-b]indole (harman), 2-amino-9H-pyrido [2,3-b]indole (AαC), 2-amino-3,8 dimethylimidazo [4,5-f]-quinoxaline (MeIQx), and 2-amino-1-methyl-6-phenylimidazo [4,5-b]-pyridine (PhIP) were detected in all of the cooked beef patties. Analysis of variance revealed that the addition of 1 or 3 g of FOS significantly reduced the formation of total amino-carboline type HCAs in the cooked beef patties, and adding the 1 or 3 g of FOS to ground beef patties reduced levels of PhIP and MeIQx (amino-imidazo-azaarenes; AIAs) in the patties. When it is compared with the HCA formation in control, additions of minced garlic (5.0, 10.0, and 15.0 g) to the ground beef patties (100 g) reduced HCA formation in the range of 14 to 100%.  相似文献   

2.
This paper describes a method for the determination of nine heterocyclic aromatic amines (HCAs) in commercial frozen meat products, which were sold in Turkey by ultrafast liquid chromatography (UFLC) with ultraviolet visible detection. HCAs are separated on a Shim-pack XR-ODS (7.5?×?3 mm, 2.2 μm). Varying levels of 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) (up to 1.95 ng/g), 2-amino-3-methylimidazo[4,5-f]quinoxaline (IQx) (up to 4.17 ng/g), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ) (up to 0.69 ng/g), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) (up to 0.83 ng/g), 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx) (up to 0.22 ng/g), 2-amino-3,7,8-trimethylimidazo[4,5-f]quinoxaline (7,8-DiMeIQx) (up to 0.94 ng/g), 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine (PhIP) (up to 4.58 ng/g), 2-amino-9H-pyrido[2,3-b]indole (AαC) (up to 0.57 ng/g), and 2-amino-3-methyl-9H-pyrido[2,3-b]indole (MeAαC) (up to 3.51 ng/g) were detected in these commercial frozen meat products of Turkey. The data obtained show clearly that HCAs could be isolated in a very short time (5 min) by using UFLC.  相似文献   

3.
Heterocyclic aromatic amines (HCAs) in meatballs ready to eat and sold in restaurants in Turkey were determined. A solid phase extraction method was used to isolate HCAs from meatballs. Various HCAs analysed by ultra fast liquid chromatography (UFLC) were varying levels of 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) (up to 1.59 ng/g), 2-amino-3-methylimidazo[4,5-f]quinoxaline (IQx) (up to 3.81 ng/g), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ) (up to 0.66 ng/g), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) (not detected or not quantified), 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx) (not detected or not quantified), 2-amino-3,7,8-trimethylimidazo[4,5-f]quinoxaline (7,8-DiMeIQx) (up to 0.43 ng/g), 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine (PhIP) (up to 1.93 ng/g), 2-amino-9H-pyrido[2,3-b]indole (AαC) (up to 0.35 ng/g), and 2-amino-3-methyl-9H-pyrido[2,3-b]indole (MeAαC) (up to 0.43 ng/g) in cooked meatballs which are consumed in Turkey. Overall average of total HCA amount was 5.54 ng/g. The present study is to prove that HCAs can be isolated in a very short time (5 min) by using UFLC.  相似文献   

4.
Heterocyclic aromatic amines (HAAs) are sometimes formed in meats and fish cooked at high temperatures. In the present study, the effects of cooking methods by deep-fat frying, pan-frying, grilling and barbecuing on the formation of HAAs of fillets of rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta fario) were investigated. Barbecued brown trout (1 g) was estimated to contain 0.12 ng of IQ (2-amino-3-methylimidazo[4,5-f]quinoline), 0.02 ng 4,8-DiMeIQx (2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline). Grilled rainbow trout (1 g) was estimated to contain 0.02 ng 4,8-DiMeIQx. MeIQ (2-amino-3,4-dimethylimidazo[4,5-f]quinoline), MeIQx (2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline) and PhIP (2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine) were not detectable in all cooked fish.  相似文献   

5.
In this study, heterocyclic anime (HCA) contents were monitored in commonly consumed pan-fried beefsteak based on the highest level of human exposure. Effect of addition of extra virgin olive oil (EVOO) on HCAs formation in fried beef steaks was evaluated. After EVOO was spread on the meat surface, the raw beef was cooked at 200°C for 5 min on each side. The HCAs were extracted from the meat samples and purified using a solid-phase extraction method and then analyzed by liquid chromatography-mass spectrometry (LC-MS). Among the 15 HCAs, 3-amino-1,4-dimethyl-5H-pyrido-[4,3-b]indole (Trp-P-1), 3-amino-1-methyl-5H-pyrido [4,3-b]indole (Trp-P-2), 9H-pyrido [3,4-b]indole (Norharman), 1-methyl-9H-pyrido [3, 4-b]indole (Harman), 2-amino-9H-pyrido [2,3-b]indole (AαC), 2-amino-3-methyl-9H-pyrido [2,3-b]indole (MeAαC), 2-amino-3,8-dimethylimidazo [4,5-f]-quinoxaline (MeIQx), and 2-amino-1-methyl-6-phenylimidazo [4,5-b]-pyridine (PhIP) were detected in all of the cooked beefsteaks. HCAs formation was significantly reduced (p<0.05) when the EVOO was added to the beef prior to cooking. The addition of 2 and 4 g of EVOO considerably inhibited HCAs formation in the fried beefsteak. However, adding excess amounts of EVOO promoted some HCAs formation.  相似文献   

6.
Heterocyclic aromatic amines (HCAs) are mutagenic and carcinogenic compounds that are produced in meats cooked at high temperature. In this study, 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 9H-pyrido[3,4-b]indole (norharman), and 1-methyl-9H-pyrido[3,4-b]indole (harman) were studied. A new extraction method was developed for the determination of heterocyclic amines with high-performance liquid chromatography (HPLC). Linearity for each HCA was observed with a high regression coefficient (r?=?0.9999, P?<?0.01 for IQ; r?=?0.9990, P?<?0.01 for MeIQx; r?=?0.9989, P?<?0.01 for 4,8-DiMeIQx; r?=?0.9934, P?<?0.05 for PhIP; r?=?1.000, P?<?0.01 for norharman; r?=?0.9991, P?<?0.01 for harman). Limits of detection for various HCAs were found between 0.04 and 1.40 ng/g. Limits of quantification were found in the range of 0.13–4.40 ng/g. Recovery rates varied from 68.9 % to 87.8 %. This method was compared with two different common HCA extraction methods in literature. The optimized new extraction method and the other two methods were used for the determination of HCAs in ten different cooked meatball samples. Sample extraction procedures of HCAs were investigated in more detail, and a rapid, accurate, precise, and reliable extraction method was developed.  相似文献   

7.
《Food chemistry》2001,74(1):11-19
Model systems based on pressed meat from ox, pork and chicken were used to study the formation of carcinogenic/mutagenic heterocyclic amines (HAs). The composition of precursors (free amino acids, creatine and glucose) was examined and samples were heated in test-tubes under wet and dry conditions at 175 and 200°C for 30 min. Several HAs were detected, and the formation of DMIP (2-amino-1,6-dimethylimidazo[4,5-b]-pyridine), TMIP (2-amino-1,5,6-trimethyl-imidazo[4,5-b]-pyridine), IFP (2-amino-1,6-dimethylfuro[3,2-e]imidazo[4,5-b]-pyridine) and PhIP (2-amino-1-methyl-6-phenylimidazo[4,5-b]-pyridine) was found to be favoured by dry heating conditions. Highest amounts of PhIP and IFP were detected in heated meat juice from chicken breast, while more MeIQx (2-amino-3,8-dimethylimidazo[4,5-f]-quinoxaline) was found in heated meat juices from roast beef and pork chop. Norharman (9H-pyrido[3,4-b]-indole) and Harman (1-methyl-9H-pyrido[3,4-b]-indole) were also detected at high levels.  相似文献   

8.
Heterocyclic amines (HAs), which form in meats during heating and cooking, are recognized as mutagenic and carcinogenic compounds. In this study, 13 HAs and 2 β-carbolines (BCs) were analyzed in cooked Korean meat products, including griddled bacon, griddled pork loin, boiled pork loin, boiled chicken meat, chicken meat stock, chicken breast for salad and chicken patty. The samples were either cooked in the laboratory or purchased from local fast-food restaurants. The HAs and BCs in the samples were separated using solid-phase extraction and were analyzed by high performance liquid chromatography–mass spectrometry (HPLC–MS). The most frequently detected HAs and BCs in the cooked meats were harman (1-methyl-9H pyrido[4,3-b]indole; 990.9 ng g?1), norharman (9H-pyrido[4,3-b]indole; 412.7 ng g?1) and PhIP (2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine; 258.2 ng g?1). The griddled pork loin and bacon contained higher levels of norharman, harman and PhIP than the other cooked meats. PhIP, which is classified as a Group 2B carcinogen by the International Agency for Research on Cancer, had levels of 258.2 and 168.2 ng g?1 in the griddled pork loin and griddled bacon, respectively. The griddled bacon was the only sample containing TriMeIQx (2-amino-3,4,7,8-tetramethylimidazo[4,5-f]quinoxaline; 79.9 ng g?1). IQ (2-amino-3-methyl imidazo[4,5-f]quinoline), 7,8-DiMeIQx (2-amino-3,7,8-trimethylimidazo[4,5-f]quinoxaline), 4,8-DiMeIQx (2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline) and AαC (2-amino-9H-pyrido[2,3-b]indole) were detected at trace levels in all samples.  相似文献   

9.
Heterocyclic amines (HCAs), potent mutagens and a risk factor for human cancers, are produced in meats cooked at high temperature. The aim of this study was to determine the HCA content in cooked meat products (beef, chicken, pork, fish) prepared by various cooking methods (pan frying, oven broiling, and oven baking at 170 to 230 °C) that are preferred by U.S. meat consumers. The primary HCAs in these samples were PhIP (2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine) (1.49-10.89 ng/g), MeIQx (2-amino-3,8-dimethylimidazo [4,5-f]quinoxaline) (not detected-4.0 ng/g), and DiMeIQx (2-amino-3,4,8-trimethyl-imidazo [4,5-f]quinoxaline) (not detected-3.57 ng/g). Type and content of HCAs in cooked meat samples were highly dependent on cooking conditions. The total HCA content in well-done meat was 3.5 times higher than that of medium-rare meat. Fried pork (13.91 ng/g) had higher levels of total HCAs than fried beef (8.92 ng/g) and fried chicken (7.00 ng/g). Among the samples, fried bacon contained the highest total HCA content (17.59 ng/g).  相似文献   

10.
Although mutagenic and carcinogenic heterocyclic amines (HCAs) are known to be formed in cooked meat and fish, human HCA exposure and carcinogenic risk have not been elucidated in sufficient detail. In this work, we investigated the formations of HCA–amino acid adducts in a model system by using a liquid chromatography–mass spectrometry to elucidate another source of human HCA exposure. The 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) adduct with glycine was formed easily by heating at 200 °C within 5 min, which is probably based on the dehydration condensation of the amino group of PhIP and carboxyl group of glycine. PhIP and other HCAs such as 2-amino-3-methyl-3H-imidazo[4,5-f]quinolone, 2-amino-3,8-dimethylimidazo[4,5-f]-quinoxaline and 3-amino-1,4-dimethyl-5H-pyrido[3,4-b]indole, also bound with various amino acids by heating. Among these amino acids, proline tends to form adducts with HCAs, but serine, cysteine and lysine hardly bound with HCAs. These results provided a basic understanding of the formation of HCA adducts with amino acids during cooking.  相似文献   

11.
The effect of oil-based marinades containing grape seed extract (Vitis vinifera L.; 0.2, 0.4, 0.6 and 0.8 g/100 g) formulated in a water/oil emulsion or rosemary extract (Rosmarinus officinalis; 0.12, 0.2, 0.6, 1.0 and 1.5 g/100 g) in oil on the formation of heterocyclic amines (HAs) in fried beef patties was examined. After application of marinades and frying, four HAs MeIQx (2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline), PhIP (2-amino-1-methyl-6-phenylimidazo[4,5b]pyridine), Norharman, and Harman were found at low levels in all fried patties, MeIQx (0.3–1.0 ng/g), and PhIP (0.02–0.3 ng/g). The content of MeIQx and PhIP were significantly reduced by approx. 57% and 90% (p < 0.05), respectively, after use of marinades containing the highest extract concentration. The antioxidant capacity of grape seed was about two-times greater than that of rosemary extract. A correlation between inhibition of HAs and Trolox-equivalents (MeIQx, R2 = 0.85, p < 0.001; PhIP, R2 = 0.83, p < 0.001) was found. Sensory tests showed a high acceptance of flavour and colour for controls and samples.  相似文献   

12.
The effects of natural food ingredients including Korean bramble, onion, and marinade sauce with water extracts of olive and lotus leaf on the formation of 15 heterocyclic amines (HCAs) were evaluated in fried beef patties and chicken breasts. The patties and chicken breasts containing natural food ingredients were fried at 230 and 200°C for 8 min on each side. Addition of 4 g Korean bramble to beef patties reduced the formation of 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), 9H-pyrido [3,4-b]indole (Norharman), and 2-amino-6-methyldipyrido [1,2-a:3′,2′-d]imidazole (Glu-P-1) by 74, 62, and 39%, respectively. Also, when 2 g onion was added to beef patties, the formation of 2-amino-3,4,8-trimethylimidazo [4,5-f]quinoxaline (4,8-DiMeIQx), Glu-P-1, MeIQ, Norharman, and 2-amino-1-methyl-6-phenylimidazo-[4,5-b]pyridine (PhIP) was inhibited by 100, 96, 88, 74, and 79%, respectively. When marinade sauce containing 2% water extracts of olive and lotus leaf was added to chicken breasts, most HCAs formation was inhibited. Especially, the formation of Glu-P-1, 2-aminodipyrido [1,2-a:3′,2′-d]imidazole (Glu-P-2), and MeIQ were reduced by 100%.  相似文献   

13.
Heterocyclic aromatic amines (HAAs) are potent mutagens and carcinogens generated during the heat processing of meat. HAAs, which are abundant in processed meat products, include 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx), and 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP). The content of these three HAAs in fried pork was determined by LC-MS/MS. The effects of frying time and temperature, sample shape, and addition of antioxidants on the generation of HAAs were investigated. The results show that HAAs were produced during frying, and their levels increased with increasing frying time and temperature. Pork patties had the highest concentration of HAAs compared with pork meatballs and pork strips. The addition of antioxidant of bamboo leaves (AOB), liquorice extract, tea polyphenol, phytic acid and sodium iso-ascorbate to pork before frying had an inhibitory effect on HAA generation, with AOB being the most effective antioxidant. Inhibition levels of nearly 69.73% for MeIQx, 53.59% for 4,8-DiMeIQx and 77.07% for PhIP in fried pork were achieved when the concentrations of AOB added were 0.02, 0.01 and 0.10 g kg?1, respectively.  相似文献   

14.
Aminoazaarenes (heterocyclic amines, HAs) contents were investigated in pan-fried pork meat as well as in gravies generated during frying. The clean-up procedure included alkaline hydrolysis, tandem solid phase extraction on columns filled with Extrelut – diatomaceous earth, cation exchanger (propyl sulfonic acid) and chemically bounded phase – C18. Identification and quantitative analysis of HAs fraction was carried out using a HPLC system with DAD-type detector. Separation was achieved by using TSK-gel ODS 80-TM column and a mixture of 5% acetonitrile and 95% triethylamine phosphate buffer (pH 3.3) as a mobile phase. Six compounds were determined: 2-amino-1,6-dimethylimidazo[4,5-b]pyridine (DMIP), 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (8-MeIQx), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx), 2-amino-1-methyl-6-phenyl-imidazo[4,5-b]pyridine (PhIP). Two types of dishes prepared at home according to common recipes used in Poland were investigated. The total content of aminoazaarenes determined in collar was 7.2 and in chop samples 18.0 ng g−1 of cooked meat. The total contents of investigated HAs in gravy samples were 10.2 and 15.1 ng g−1 of cooked meat for collars and chops, respectively.  相似文献   

15.
Heterocyclic aromatic amines (HAAs) formed in cooked muscle foods are recognized as mutagenic and carcinogenic compounds. A total of 9 nine HAAs were analyzed in 34 meat products consumed in China. The total HAAs content in all meat products ranged from 4.14 to 108.80 ng/g. Dry and sauced meats contained higher concentration of total HAAs than other kinds of meat products. Samples from East and Northwest China showed higher concentrations of total HAAs than samples from other regions. The most common specific HAAs, harman and norharman, were detected in all meat samples at levels of 1.09–63.97 and 1.19–62.30 ng/g, respectively. Concentrations of MeIQx, PhIP, 4, 8-DiMeIQx, and AαC were much lower. MeAαC (n=8), IQ (n=15), and Trp-P-2 (n=23) were detected in some samples.  相似文献   

16.
Heterocyclic aromatic amines in fried poultry meat   总被引:1,自引:0,他引:1  
 Heterocyclic aromatic amines are mutagenic compounds that are formed during heating of meat and fish. These substances are products of the reaction of creatine with amino acids and carbohydrates. It is recommended that exposure to these probable human carcinogens should be minimised. In fried boneless lean turkey breast meat five heterocyclic aromatic amines {2-amino-1-methyl-imidazo[4,5-f]quinoline (IQ), 2-amino-3,8-dimethyl-imidazo-[4,5-f]quinoline (MeIQ), 2-amino-3,8-dimethyl-imidazo[4,5-f]quinoxaline (MeIQx), 2-amino-3,4,8-trimethyl-imidazo[4,5-f]quinoxaline (4,8-DiMeIQx) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)} were found. The temperature regime which was applied for frying resulted in a surface temperature of about 140°C. Clean-up was done by acid-base partition followed by solid-phase extraction (SPE) using blue cotton. HPLC analysis was carried out using electrochemical detection for IQ- and IQx-type compounds and fluorescence detection for PhIP. The low temperatures used during frying yielded comparably lower amounts of heterocyclic aromatic amines. The concentrations of the aromatic amines were as follows: IQ 1.1 μg/kg, MeIQ 0.9 μg/kg, MeIQx μg/kg, 4,8-DiMeIQx 0.4 μg/kg, and PhIP 3.8 μg/kg. Received: 19 February 1997 / Revised version: 21 April 1997  相似文献   

17.
 Heterocyclic aromatic amines (HAs) are mutagenic compounds that are formed during heating of meat and fish. These substances are reaction products of creatine with amino acids and carbohydrates. It is recommended that exposure to these probable human carcinogens should be minimised. Five heterocyclic aromatic amines which occur in beef were investigated: 2-amino-3-methyl-imidazo[4,5-f]quinoline (IQ), 2-amino-3,4-dimethyl-imidazo[4,5-f]quinoline (MeIQ), 2-amino-3,8-dimethyl-imidazo[4,5-f]quinoxaline (MeIQx), 2-amino-3,4,8-trimethyl-imidazo[4,5-f]quinoxaline (4,8-DiMeIQx), and 2-amino-1-methyl-6-phenyl-imidazo[4,5-b]pyridine (PhIP). Clean-up was done by acid-base partition followed by SPE using blue cotton. HPLC analysis was carried out by using electrochemical detection for IQ- and IQx-type compounds and fluorescence detection for PhIP. The concentrations of the aromatic amines were as follows: IQ, 10.2 μg/kg; MeIQ, 2.46 μg/kg; MeIQx, 13.2 μg/kg; 4,8-DiMeIQx, 2.26 μg/kg; and PhIP, 5.48 μg/kg. The application of spices (rosemary, thyme sage, garlic, brine) reduced the content of the HAs below 60% of the amount found in the control. Received: 23 April 1998  相似文献   

18.
Binding of three mutagens, known to occur in fried or broiled foods, by thirteen different types of dietary fiber was investigated in vitro. Nonspecific binding by other food polymers was minimized by using protease and amylase treatment. Water-insoluble fiber components were responsible for most of the binding capacity. Generally, a slightly larger proportion of 2-amino-3,4-dimethylimidazo [4,5-f]quinoline (MeIQ) than of 2-amino-3-methylimidazo [4,5-f]quinoline (IQ) and 2-amino-3,8-dimethylimidazo] -4,5-f]quinoxaline (MeIQx) was bound. There was a significant correlation between Klason lignin content and binding of mutagens. Optimum pH for binding was between 4 and 6. Dietary fiber from sorghum had the highest binding capacity, which could be due to the presence of a large Klason lignin fraction.  相似文献   

19.
 Levels of known heterocyclic amines vary from undetectable in many meats sold in fast food restaurants, to over 10 ng/g for meats prepared in restaurants that cook food to order, to hundreds of nanograms per gram for some meats cooked under certain home or laboratory conditions. To simulate the dry reactions that seem to occur at the meat surface we developed a model system to mimic these processes. Mixtures of free amino acids, creatinine and glucose, simulating the composition of beef or chicken, heated at 200  °C, form eight heterocyclic amines. Besides the commonly found 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline, 2-amino-3-methylimidazo[4,5-f]quinoline, 2-amino-3,4-dimethylimidazo[4,5-f]quinoline, 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, 2-amino-1,6-dimethylimidazo[4,5-b]pyridine, 2-amino-1,5,6-trimethylimidazo[4,5-b]pyridine and 2-amino-1,6-dimethylfuro[3,2-e]imidazo[4,5-b]pyridine were also found. The calculated risk of consumption of heterocyclic amines is determined by the dietary dose, the extrapolation of carcinogenic potencies from rodents to humans, and the extrapolation of high rodent doses to low human exposures. Results suggest that DNA binding is linear with dose, but that the human DNA forms more adducts per unit dose than that of the rat. Altogether, the risk appears to be equivalent to that for many carcinogens that are regulated. Received: 23 April 1998  相似文献   

20.
 Levels of known heterocyclic amines vary from undetectable in many meats sold in fast food restaurants, to over 10 ng/g for meats prepared in restaurants that cook food to order, to hundreds of nanograms per gram for some meats cooked under certain home or laboratory conditions. To simulate the dry reactions that seem to occur at the meat surface we developed a model system to mimic these processes. Mixtures of free amino acids, creatinine and glucose, simulating the composition of beef or chicken, heated at 200  °C, form eight heterocyclic amines. Besides the commonly found 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline, 2-amino-3-methylimidazo[4,5-f]quinoline, 2-amino-3,4-dimethylimidazo[4,5-f]quinoline, 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, 2-amino-1,6-dimethylimidazo[4,5-b]pyridine, 2-amino-1,5,6-trimethylimidazo[4,5-b]pyridine and 2-amino-1,6-dimethylfuro[3,2-e]imidazo[4,5-b]pyridine were also found. The calculated risk of consumption of heterocyclic amines is determined by the dietary dose, the extrapolation of carcinogenic potencies from rodents to humans, and the extrapolation of high rodent doses to low human exposures. Results suggest that DNA binding is linear with dose, but that the human DNA forms more adducts per unit dose than that of the rat. Altogether, the risk appears to be equivalent to that for many carcinogens that are regulated. Received: 23 April 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号