共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
当前,越来越多的企业开始将自己的核心业务与数据迁移到云上,其中很多业务需要相应的弹性服务来应对负载的实时变化,因此对弹性的评测正变得越来越重要,然而当前缺少一种较为全面的弹性评测方法。为解决以上问题,从资源分配、QoS、资源配置时间等多个角度,对云计算的弹性进行较为全面的分析,提出适用于供应商和用户两个角度的评测方法。在已有基础上,提出资源分配、资源配置时间两个方面的计算模型,并对现存的罚金模型进行改进。最后,在CloudStack云平台上,使用auto-scaling和scale-out两种弹性扩展策略,以TPC-W为负载验证了所提方法的有效性。 相似文献
3.
数据中心是云计算中数据运算、交换、存储的中心。近年来以虚拟机为粒度的虚拟机放置管理成为云数据中心能耗管理、实现动态可伸缩资源提供的重要支撑技术。在虚拟机放置的动态管理阶段,虚拟机迁移触发机制主要是根据物理主机中资源利用率的变化情况,决定是否需要将虚拟机迁移到其它主机。迁移时机判决准确能够有效地平衡过热点并关掉过冷点。当前的迁移时机缺乏对整个数据中心负载变化行为趋势的反映,也因为静态的阈值设定容易发生频繁的迁移,造成不必要的迁移代价和传输开销。提出了基于阈值滑动窗口机制的虚拟机迁移判决算法(iWnd),其能够根据整个数据中心任务量的多少动态调整高低阈值间窗口的大小,减少了任务量满负荷时期需要迁移虚拟机的数量,从而避免不必要的迁移开销和传输代价,有效地实现节能。在云计算平台Cloudsim上进行了仿真实验。结果表明,提出的iWnd算法在减少虚拟机迁移数量、降低迁移失败率上有良好的效果,同时并未产生过多额外的功耗。 相似文献
4.
5.
提出了一种云数据中心基于数据依赖的虚拟机选择算法DDBS(data dependency based VM selection).参考Cloudsim项目中方法,将虚拟机迁移过程划分为虚拟机选择操作(VM selection)和虚拟机放置(VM placement)操作.DDBS在虚拟机选择过程中考虑虚拟机之间的数据依... 相似文献
6.
7.
任何复杂系统都要受到某些基本规律的约束,包括宏观、中观与微观的多层次规律的约束.怎样从一个系统的这些偶然现象(观测数据)中找出它的必然规律,是知识发现(KDD)与数据挖掘(DM)的首要任务,也是研究目标.建立了一个基于演化计算与自然分形相结合的多尺度的动态预测系统.它以微分方程描述系统的宏观行为,以自然分形刻画系统的微观行为.同时,以股票市场数据(君安证券股票数据)和科学观测数据(武汉汛期雨量数据)为例,进行了分析与预测模拟.数值实验表明,该系统的描述(拟合)性能优越,即使是对起伏波动很大的时间序列,也能拟合得很好,预测效果也较好. 相似文献
8.
Cloud computing provides different constructive services in order to share huge scale information, computing resources, storage resources, and offer research knowledge. Cloud Service Providers (CSPs) afforded its services to cloud customers, usually in structure of Virtual Machines (VMs). In this paper, Fractional Artificial Bee Chicken Swarm Optimization (Fractional ABCSO) is introduced for VM placement in the cloud. The Fractional ABCSO is obtained by integrating the Fractional concept (FC), Chicken Swarm Optimization (CSO), and Artificial Bee Colony (ABC). Here, the cloud simulation is performed by means of VM and physical machine (PM). At first, VM placement is carried out using different system factors, such as Central Processing Unit (CPU), Million Instructions per Second (MIPS), bandwidth, migration cost, memory, frequency, power, along with Quality of Service (QoS). The developed Fractional ABCSO algorithm outperformed other existing techniques with regard to load, migration cost, and power consumption of 0.1614, 0.0535, and 0.0408. 相似文献
9.
10.
11.
Fahmi Husni Baqai Shahab Bashandy Ahmed Ghafoor Arif 《Multimedia Tools and Applications》1999,8(1):91-114
The emergence of gigabit local area networks (G-LANs) has spurred a tremendous interest in supporting networked multimedia applications over a LAN. In this paper, we propose a mechanism for dynamically allocating network resources in asynchronous LANs. Presentation of multimedia objects with required play-out quality requires Quality of Service (QoS) guarantees by the underlying networking infrastructure. Existing asynchronous LANs, such as Ethernet, do not support the notion of QoS due to their asynchronous media access protocol. For such networks, we propose a dynamic bandwidth management scheme that uses the concept of Time Division Multiple Access (TDMA). Significant performance improvement is observed through experimental results. In particular, the transmission rates for multimedia hosts improve significantly with low jitter variations in media streams. We also propose a framework for graceful degradation of play-out quality of multimedia objects in case the LAN's total capacity is not sufficient to meet the overall demand. 相似文献
12.
13.
古人云“以史为鉴”,说的是吸取历史的经验教训,对未来的情况做出预判或者改变。生活中,亦是存在相似的利用历史数据对未来变化趋势进行预测分析的时间序列问题。本文就时间序列一类的问题进行研究,探讨如何更好地根据历史统计数据,对未来的变化趋势进行预测分析。本文基于神经网络,以气象观测历史数据作为研究的对象,建立了气温变化时序预测模型。本模型利用大数据相关技术对数据进行特征处理,通过深度神经网络,学习特征数据和标签数据之间复杂的非线性关系,从而实现对气温变化的趋势预测。实验结果表明,相较其他模型,本文的模型能够更好地进行时序预测,同时也证明了神经网络用于气象预测的可行性。 相似文献
14.
Multi-step Learning Rule for Recurrent Neural Models: An Application to Time Series Forecasting 总被引:3,自引:0,他引:3
Multi-step prediction is a difficult task that has attracted increasing interest in recent years. It tries to achieve predictions several steps ahead into the future starting from current information. The interest in this work is the development of nonlinear neural models for the purpose of building multi-step time series prediction schemes. In that context, the most popular neural models are based on the traditional feedforward neural networks. However, this kind of model may present some disadvantages when a long-term prediction problem is formulated because they are trained to predict only the next sampling time. In this paper, a neural model based on a partially recurrent neural network is proposed as a better alternative. For the recurrent model, a learning phase with the purpose of long-term prediction is imposed, which allows to obtain better predictions of time series in the future. In order to validate the performance of the recurrent neural model to predict the dynamic behaviour of the series in the future, three different data time series have been used as study cases. An artificial data time series, the logistic map, and two real time series, sunspots and laser data. Models based on feedforward neural networks have also been used and compared against the proposed model. The results suggest than the recurrent model can help in improving the prediction accuracy. 相似文献
15.
科学有效的水质预测对于水资源的管理与水污染预警尤为重要。由于水质指标序列存在非线性、非平稳性、模糊性和季节性等特点,传统预测模型的精度受到一定的限制。结合差分整合自回归移动平均ARIMA模型和经典模糊时间序列模型的特性,提出了一种基于动态隶属度的模糊时间序列水质预测新模型。首先,利用模糊C均值聚类从原始数据中构建隶属度序列;其次,利用经典的时间序列模型对不同的子隶属度序列进行预测,得到动态隶属度;最后,去模糊化得到水质指标的预测值。应用提出的新模型对岷江某断面的水质指标进行了短期预测,并与经典模糊时间序列模型和ARIMA乘积季节模型进行对比。实验结果表明,新模型在RMSE、MAPE和MAE上均优于经典模糊时间序列模型和ARIMA乘积季节模型,极大地提高了预测精度,可为水污染防治提供有价值的参考。 相似文献
16.
Yang SONG Yunchun LI Hailong YANG Jun XU Zerong LUAN Wei LI 《Frontiers of Computer Science》2021,15(6):156213
The data stream processing framework processes the stream data based on event-time to ensure that the request can be responded to in real-time. In reality, streaming data usually arrives out-of-order due to factors such as network delay. The data stream processing framework commonly adopts the watermark mechanism to address the data disorderedness. Watermark is a special kind of data inserted into the data stream with a timestamp, which helps the framework to decide whether the data received is late and thus be discarded. Traditional watermark generation strategies are periodic; they cannot dynamically adjust the watermark distribution to balance the responsiveness and accuracy. This paper proposes an adaptive watermark generation mechanism based on the time series prediction model to address the above limitation. This mechanism dynamically adjusts the frequency and timing of watermark distribution using the disordered data ratio and other lateness properties of the data stream to improve the system responsiveness while ensuring acceptable result accuracy. We implement the proposed mechanism on top of Flink and evaluate it with realworld datasets. The experiment results show that our mechanism is superior to the existing watermark distribution strategies in terms of both system responsiveness and result accuracy. 相似文献
17.
一种基于DTW的新型故事时间序列相似性度量方法 总被引:1,自引:0,他引:1
现有时间序列相似性度量方法在进行股市序列相似性分析时,通常忽略成交量等其他重要因素对股价的影响,从而导致序列聚类、分类不精确。针对这一问题,本文提出了新的股市时间序列相似性度量方法。该方法在动态时间弯曲算法的基础上,通过引进时间衰竭因子,并结合成交量因素,给出了股市序列的最终度量公式。为了证明提出方法的可行性和有效性,本文实验部分通过选取家电等三个行业中的股票数据进行测试。实验结果表明,基于动态时间弯曲(Dynamic time warping,DTW)的新型股市时间序列相似性度量方法能够在保持股票序列形态特征的基础上,较好地解决股市技术分析中量价关系问题,从而更有效地应用于股市技术分析里关于模式发现等领域。 相似文献
18.
云计算环境下的服务调度和资源调度研究 总被引:1,自引:0,他引:1
云计算中的服务调度与资源调度对云计算的性能有重要影响,在分析现有云计算调度模式的基础上,针对云计算数据密集与计算密集的特点,提出分层调度策略以实现云计算中的服务与资源调度。分层调度策略对任务进行划分确定作业优先级,并通过数据局部性和总任务完成率对资源进行分配。数值评价部分应用分层调度与已有调度进行比较。实验结果表明,所采用的调度有效提高了资源利用率,为云服务的进一步研究提供了思路。 相似文献
19.
There exists a wide range of paradigms, and a high number of different methodologies that are applied to the problem of time series prediction. Most of them are presented as a modified function approximation problem using input/output data, in which the input data are expanded using values of the series at previous steps. Thus, the model obtained normally predicts the value of the series at a time (t+h) using previous time steps (t-τ1),(t-τ2),…,(t-τn). Nevertheless, learning a model for long term time series prediction might be seen as a more complicated task, since it might use its own outputs as inputs for long term prediction (recursive prediction). This paper presents the utility of two different methodologies, the TaSe fuzzy TSK model and the least-squares SVMs, to solve the problem of long term time series prediction using recursive prediction. This work also introduces some techniques that upgrade the performance of those advanced one-step-ahead models (and in general of any one-step-ahead model), where they are used recursively for long term time series prediction. 相似文献
20.
近些年,互联网金融市场在国内外迅速发展;同时,针对互联网金融市场的研究也成为了学术界的热点.相比于传统金融市场,互联网金融市场具有更高的流动性和易变性.针对互联网金融市场的动态(日交易量和日交易次数)进行研究,提出了基于深度神经网络结构的融合层次时间序列学习的预测模型.首先,该模型可以实现对多序列(市场宏观动态序列和多种子序列)特征变量输入的处理,并且在时间和序列特征2个维度上利用注意力机制来融合输入变量.其次,模型设计了基于预测序列平稳性约束的优化函数,使得模型具有更好的稳健性.最后,在真实的大规模数据集上进行了大量的实验,结果充分证明了所提出的模型在互联网金融市场动态预测问题上的有效性与稳健性. 相似文献