首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Micron-scale-resolution thermal conductivity mapping on graded compositions created in diffusion-multiple samples can be used to rapidly establish composition-phase-property relationships and to reveal the effects of solid-solutioning, order-disorder transition, compositional point defect, and site preference on thermal conductivity.
  相似文献   

2.
《Acta Materialia》2000,48(14):3671-3685
The interaction between Al and the transition metals Ti and Cr on the stability of the ω phase in metastable β-based structures was studied. Alloys were quenched from the melt to retain at room temperature a metastable β phase (B2 structure), which is stable at high temperatures. The structural study of the ω phase was carried out by correlating the deviation of ω structure from the ideal ω phase to the compositions of the parent β phase. Deviation of ω structures from the ideal one was related to the electron concentration of the parent β phase. A diffuse ω structure is reported in the Cr2Al phase (C11b structure) for the first time. The results are consistent with our previous suggestions that Al stabilises the ω phase in transition metals by lowering the spatial conduction electron concentration in the parent β phase and by enhancing p–d hybridisation of valence electrons. In the ternary Ti–Al–Cr alloys, prolonged annealing of the Ti–30Al–10Cr and Ti–20Al–10Cr alloys at 450°C led to the formation of two types of ordered crystalline ω structure.  相似文献   

3.
4.
5.
6.
《Intermetallics》1999,7(1):101-108
A study of the binary Al-Sc phase diagram has been performed by means of thermodynamic calculations and experimental measurements. The enthalpy of formation of all intermetallic compounds has been determined and a cursory examination of the phase equilibria carried out, for compositions greater than 40 at% Sc. Two new invariant reactions have been identified in the Sc-rich part of the diagram: L ↔ (βSc)+Sc2Al at 1185°C and (βSc) ↔ Sc2Al+(αSc) at 970°C. A coherent set of Gibbs energy expressions for all the phases in the system has been generated by a least square optimisation procedure using all the experimental data available. The overall agreement is satisfactory but some uncertainties still persist, especially concerning the ScAl phase, owing to experimental difficulties.  相似文献   

7.
ABSTRACT

In this study, the corrosion mechanisms of the AA2024-T3 and the AA2098-T351 were investigated and compared using various electrochemical techniques in 0.005?mol?L?1 NaCl solution. The severe type of corrosion in the AA2098-T351 was intragranular attack (IGA) although trenching and pitting related to the constituent particles were seen. On the other hand, the AA2024-T3 exhibited severe localised corrosion associated with micrometric constituent particles, and its propagation was via grain boundaries leading to intergranular corrosion (IGC). Electrochemical techniques showed that the corrosion reaction in both alloys was controlled by diffusion. The non-uniform current distribution in both alloys showed that EIS was not a proper technique for comparing the corrosion resistance of the alloys. However, local electrochemical techniques were useful for the evaluation of the corrosion resistance of the alloys.  相似文献   

8.
9.
The Al–Fe–Si system was studied for an isothermal section at 800 °C in the Al-rich part and at 900 °C in the Fe-rich part, and for half a dozen vertical sections at 27, 35, 40, 50 and 60 at.% Fe and 5 at.% Al. Optical microscopy and powder X-ray diffraction (XRD) was used for initial sample characterization, and Electron Probe Microanalysis (EPMA) and Scanning Electron Microscopy (SEM) of the annealed samples was used to determine the exact phase compositions. Thermal reactions were studied by Differential Thermal Analysis (DTA). Our experimental results are generally in good agreement with the most recent phase diagram versions of the system Al–Fe–Si. A new ternary high-temperature phase τ12 (cF96, NiTi2-type) with the composition Al48Fe36Si16 was discovered and was structurally characterized by means of single-crystal and powder XRD. The variation of the lattice parameters of the triclinic phase τ1 with the composition Al2+xFe3Si3?x (?0.3 < x < 1.3) was studied in detail. For the binary phase FeSi2 only small solubility of Al was found in the low-temperature modification LT-FeSi2 (ζβ) but significant solubility in the high-temperature modification HT-FeSi2 (ζα) (8.5 at.% Al). It was found that the high-temperature modification of FeSi2 is stabilized down to much lower temperature in the ternary, confirming earlier literature suggestions on this issue. DTA results in four selected vertical sections were compared with calculated sections based on a recent CALPHAD assessment. The deviations of liquidus values are significant suggesting the need for improvement of the thermodynamic models.  相似文献   

10.
11.
Iron-based alloys with high-carbide (Fe3AlC0.5) volume fractions (up to 40%) may be obtained by careful aluminum and carbon additions. These need to be hot worked to obtain a uniform distribution of the carbide. The workability of two alloy compositions (Fe–11 wt.% Al with 0.5 wt.% C and 1.1 wt.% C) was investigated using a strain-induced crack opening (SICO) test in a Gleeble 3800 thermomechanical simulator. SICO tests were conducted in the temperature range of 1,073–1,373 K at strain rates of 0.05–0.1 s?1. Both alloys exhibited good workability with no tendency for cracking despite their high aluminum and carbon contents. However, refinement of microstructure due to thermomechanical processing could only be observed at 1,373 K for both alloys. At lower temperatures, a slightly aligned and elongated structure was observed. It is proposed that the higher solubility of carbon with an increase in temperature as well as the transformation of matrix from ferrite to austenite may play an important role in determining the optimum working temperature for these alloys.  相似文献   

12.
《Acta Materialia》2008,56(6):1182-1195
The transformation of Al3Zr (L12) and Al3(Zr1−xTix) (L12) precipitates to their respective equilibrium D023 structures is investigated in conventionally solidified Al–0.1Zr and Al–0.1Zr–0.1Ti (at.%) alloys aged isothermally at 500 °C or aged isochronally in the range 300–600 °C. Titanium additions delay neither coarsening of the metastable L12 precipitates nor their transformation to the D023 structure. Both alloys overage at the same rate at or above 500 °C, during which spheroidal L12 precipitates transform to disk-shaped D023 precipitates at ca. 200 nm in diameter and 50 nm in thickness, exhibiting a cube-on-cube orientation relationship with the α-Al matrix. The transformation occurs heterogeneously on dislocations because of a large lattice parameter mismatch of the D023 phase with α-Al. The transformation is very sluggish and even at 575 °C coherent L12 precipitates can remain untransformed. Mechanisms of microstructural coarsening and strengthening are discussed with respect to the micrometer-scale dendritic distribution of precipitates.  相似文献   

13.
《Acta Materialia》2000,48(12):3193-3199
The kinetics of ordering and disordering in the ternary b.c.c. Fe–Al–Ti alloy is investigated by means of the micro-master equation method. It was found that there are transient ordered states in the ternary b.c.c. Fe–Al–Ti alloy during the ordering from a quenched disordered state to the equilibrium ordered state. Two different mechanisms account for the occurrence of the transient states. In the kinetics of disordering, the evolution of the order parameters shows fluctuations.  相似文献   

14.
The hot deformation and dynamic recrystallization(DRX) behavior of austenite-based Fe–27Mn–11.5Al–0.95 C steel with a density of 6.55 g cm-3were investigated by compressive deformation at the temperature range of900–1150 °C and strain rate of 0.01–10 s-1. Typical DRX behavior was observed under chosen deformation conditions and yield-point-elongation-like effect caused by DRX of d-ferrite. The flow stress characteristics were determined by DRX of the d-ferrite at early stage and the austenite at later stage, respectively. On the basis of hyperbolic sine function and linear fitting, the calculated thermal activation energy for the experimental steel was 294.204 k J mol-1. The occurrence of DRX for both the austenite and the d-ferrite was estimated and plotted by related Zener–Hollomon equations. A DRX kinetic model of the steel was established by flow stress and peak strain without considering dynamic recovery and d-ferrite DRX. The effects of deformation temperature and strain rate on DRX volume fraction were discussed in detail. Increasing deformation temperature or strain rate contributes to DRX of both the austenite and the d-ferrite, whereas a lower strain rate leads to the austenite grains growth and the d-ferrite evolution, from banded to island-like structure.  相似文献   

15.
Al–Ti–C master alloys have a great potential as efficient grain refiners for aluminium and its alloys. In the present work, the Al–5Ti–C, Al–TiC and Al–5Ti master alloys have been successfully prepared by a method of liquid solidification reactions. While the Al–5Ti–C master alloy consists of some strip- or needle-like TiAl3, and in addition to TiC particles in the Al matrix, the Al–TiC master alloy revealed the presence of only TiC particles, and the Al–5Ti master alloy consists of only some blocky TiAl3 particles. A united refinement technology by Al–5Ti–C+Al–5Ti and Al–TiC+Al–5Ti master alloys was put forward in this paper. The blocky TiAl3 particles in Al–5Ti master alloy can not only improve the grain refinement efficiency of Al–5Ti–C and Al–TiC master alloys but also reduce the consumption because the blocky TiAl3 particles improve the grain refinement efficiency of TiC particles in Al–5Ti–C and Al–TiC master alloys.  相似文献   

16.
In this paper, Ti–Cr–Al–C materials were investigated by self-propagating high-temperature synthesis(SHS) according to the experimental study and numerical simulation results. The highest adiabatic combustion temperature Tadof 2,467.45 K indicates that the2Ti–0Cr–Al–C is the highest exothermic reaction system in the Ti–Cr–Al–C system. The adiabatic combustion temperature decreases with the increase of the Cr content. And a higher exothermal reaction would result in higher porosity which is induced by the high temperature and pressure of C reducing atmosphere and Al vapor. Combustion characterization of the products shows that the geometrical alternating layers result in the high exothermal reaction and flame-front propagating velocity. The higher the Tadis, the thinner the layer is. To demonstrate the process of the microscopic characterization and show the detailed combustion process closed to the experimental observations, the flame-front propagating velocity and temperature distribution were simulated numerically.  相似文献   

17.
《Intermetallics》2000,8(8):869-875
The stability region of the B2 phase at 1000°C in the Ti-rich part of the Ti–Al–Cr and Ti–Al–Fe ternary systems are investigated by energy dispersive spectroscopy (EDS) and transmission electron microscopy (TEM) using two-phase alloys and diffusion couples. It is established that the critical boundaries of the A2/B2 continuous ordering transition are functions of both the Al and Fe or Cr contents, and the phase equilibria between the α2 and the β and between the β and FeTi (B2) phases are strongly affected by the A2/B2 order–disorder transition. By extrapolating these ternary data to the Ti–Al binary and using the Bragg–Williams–Gorsky approximation a metastable A2/B2 ordering boundary is postulated to exist at 1000°C in the vicinity of 23.5 at%Al in the Ti–Al binary system.  相似文献   

18.
《Scripta materialia》2004,50(2):237-241
The martensitic transformation behavior was investigated in rapidly solidified (melt-spun) Ni–(34–37)at%Al and Ni–(32–34)at%Al–2at%Re ribbons. The addition of Re increased the temperature for the formation of Ni5Al3, hence the martensitic transformations were observed at higher temperatures than those of binary Ni–Al alloys.  相似文献   

19.
Commercial A356 alloy was refined with a homemade Al-5Ti-0.25C-2RE master alloy, and the microstructure and macrostructure of the refined alloy were investigated. The results show that the grain refining effect of A356 is poor by the addition level of 0.5 wt% master alloy, but when the level reaches 3.0 wt% the grain can get a satisfactory refining effect. Dendrite of A356 can be effectively refined by addition of 0.5 wt% master alloy; however, the refining effect is not significantly improved by further increasing the addition of master alloy. Grain and dendrite refining effects are compared in this article, and the results show that the grain and dendrite exhibit different refining effects with the same addition level of master alloy. Dendrite is easier to reach the optimal refining effect than grain.  相似文献   

20.
During high-strain-rate superplastic deformation, superplasticity indices, and the microstructure of two Al–Zn–Mg–Cu–Zr alloys with additions of nickel and iron, which contain equal volume fractions of eutectic particles of Al3Ni or Al9FeNi, have been compared. It has been shown that the alloys exhibit superplasticity with 300–800% elongations at the strain rates of 1 × 10–2–1 × 10–1 s–1. The differences in the kinetics of alloy recrystallization in the course of heating and deformation at different temperatures and rates of the superplastic deformation, which are related to the various parameters of the particles of the eutectic phases, have been found. At strain rates higher than 4 × 10–2, in the alloy with Fe and Ni, a partially nonrecrystallized structure is retained up to material failure and, in the alloy with Ni, a completely recrystallized structure is formed at rates of up to 1 × 10–1 s–1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号