首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 637 毫秒
1.
Creep in interlaminar shear of an oxide–oxide ceramic composite was evaluated at 1100°C in air and in steam. Composite consists of a porous aluminosilicate matrix reinforced with mullite/alumina (Nextel?720) fibers, has no interface between fibers and matrix, and relies on the porous matrix for flaw tolerance. The interlaminar shear strength was 7.6 MPa. Creep behavior was examined for shear stresses of 2–6 MPa. Creep run‐out of 100 h was not achieved. Larger creep strains and higher creep strain rates were produced in steam. However, steam had a beneficial effect on creep lifetimes. Composite microstructure, damage, and failure mechanisms were investigated.  相似文献   

2.
Single fiber-tow minicomposites represent the major load-bearing element of woven and laminate ceramic matrix composites (CMCs). To understand the effects of fiber type, fiber content, and matrix cracking on tensile creep in SiCf/SiC CMCs, single-tow SiCf/SiC minicomposites with different fiber types and contents were investigated. The minicomposites studied contained either Hi-Nicalon™ or Hi-Nicalon™ Type S SiC fibers with a boron nitride (BN) interphase and a chemical-vapor-infiltrated-silicon-carbide (CVI-SiC) matrix. Tensile creep was performed at 1200 °C in air. A bottom-up creep modeling approach was applied where creep parameters of the fibers and matrix were obtained separately at 1200 °C. Next, a theoretical model based on the rule of mixtures was derived to model the fiber and matrix creep-time-dependent stress redistribution. Fiber and matrix creep parameters, load transfer model results, and numerical modeling were used to construct a creep strain model to predict creep damage evolution of minicomposites with different fiber types and contents.  相似文献   

3.
This study reports the flexural creep behavior of a fiber-reinforced glass-ceramic and associated changes in micro-structure. SiC fibers were coated with a dual layer of SiC/BN to provide a weak interface that was stable at high temperatures. Flexural creep, creep-rupture, and creep-strain recovery experiments were conducted on composite material and barium-magnesium aluminosilicate matrix from 1000° to 1200°C. Below 1130°C, creep rates were extremely low (∼10−9 S−1), preventing accurate measurement of the stress dependence. Above 1130°C, creep rates were in the 10−8 s−1 range. The creep-rupture strength of the composite at 1100°C was about 75–80% of the fast fracture strength. Creep-strain recovery experiments showed recovery of up to 90% under prolonged unloading. Experimental creep results from the composite and the matrix were compared, and microstructural observations by TEM were employed to assess the effectiveness of the fiber coatings and to determine the mechanism(s) of creep deformation and damage.  相似文献   

4.
《Ceramics International》2023,49(19):31378-31384
In the investment casting of turbine blades, ceramic cores are key components to form complex hollow structures. Superior mechanical property and leaching rate are demanded for ceramic cores. Herein, ceramic cores were fabricated using fused silica powders as the matrix, and amorphous and polycrystalline mullite fibers as the reinforcement phases, respectively. The microstructure and property evolution of ceramic cores rely on the crystallization degree of mullite fibers are explored. Both of the mullite fibers lead to improved crystallization of cristobalite, reduced sintering shrinkage, increased apparent porosity, and benefited bending strength, creep resistance, and leaching rate of the cores. Compared to the polycrystalline mullite fibers, the amorphous fibers are metastable with large quantities of structural defects, promoting the diffusion mass transfer and forming strong interface between fibers and matrix. Therefore, the amorphous fibers have larger promotion on the bending strength and resistance to creep deformation of ceramic cores. Moreover, the structural defects of amorphous fibers ensures the high chemical activity in alkaline solutions and exhibits excellent leaching rate. The ceramic core with 4.5 wt% of amorphous mullite fibers exhibits excellent comprehensive performance with bending strengths of 28.9 MPa and 23.8 MPa at room temperature and 1550 °C, creep deformation of 0.3 mm, and leaching rate of 1.4 g/min, well meeting the casting requirements of hollow blades.  相似文献   

5.
Multi-phase—single crystal oxide fibers offer the best choice for reinforcing oxide matrix composites because they have superior creep resistance up to 1700 °C without significant strength loss at moderate temperatures due to growth of processing flaws. In this work, Directionally Solidified Al2O3–YAG eutectic fibers were grown at various rates by the Edge-defined, Film-fed Growth (EFG) method and their microstructure, microstructural stability and creep properties were studied. A methodology was developed in order to determine if the creep behavior of a fiber was affected by any heterogeneous coarsening defects. The creep behavior could be rationalized using a threshold stress concept with activation energy of 1100 kJ/mol K. TEM analysis of the crept fibers suggested that the Sapphire phase was deforming by a dislocation mechanism, while the YAG phase deformed by a diffusional mechanism. A creep model was developed which contained geometrical factors for describing the microstructure. Analysis of the data showed that the creep resistance would increase to single crystal values as the phase aspect ratio increased. Further, these two phases—single crystal structures exhibit a flaw-independent strength and are suggested to have a decrease in slow crack growth rate as the transverse phase size decreases.  相似文献   

6.
The influence of reinforcing continuous carbon fibers (AS4) on the creep and fracture of the epoxy (3501–6) matrix was studied by dynamic mechanical thermal analysis test, creep test and constant strain rate test. While the glass transition temperature (Tg) of the epoxy matrix (512 K) was increased by 5–6°K by the reinforcing fibers, the activation energy for creep/relaxation was the same for both the epoxy and its composites except off-axis composites, for which the activation energy was higher. An increase in the instantaneous and rubbery moduli and a reduction in tanδmax indicate that the reinforcing fibers stiffen the matrix and reduce the extent of viscous deformation in the epoxy matrix. This is corroborated by the creep results that recorded a reduction in the creep rate and the magnitude of creep of the pure epoxy due to the reinforcing fibers. A consequence of this reduction in energy dissipation by viscous deformation, in the epoxy matrix due to the reinforcing fibers, is a decrease in the toughness (i.e. the total fracture energy) of the epoxy matrix measured by constant strain rate test.  相似文献   

7.
Tensile stress-strain and tensile creep behaviors of an oxide-oxide composite containing an array of small circular holes were evaluated at 1200°C. The composite consists of Nextel™720 alumina-mullite fibers in a porous alumina matrix. Test specimens contained an array of 17 holes with 0.5-mm diameter drilled using a CO2 laser. The presence of holes caused reduction in tensile strength and modulus. Tensile creep tests were conducted at 1200°C in air and in steam at creep stresses ranging from 38 to 140 MPa. Primary, secondary, and tertiary creep regimes were noted in air and in steam. The presence of the laser-drilled holes accelerates the steady-state creep rates. Creep run-out, defined as 100 hours at creep stress, was attained for stress levels <60 MPa in air and for stresses <40 MPa in steam. The presence of the laser-drilled holes significantly degrades creep resistance of the composite. The retained tensile properties of all specimens that attained run-out were determined. Composite microstructure was examined; the damage and failure mechanisms were considered. The degradation of tensile properties and creep resistance are attributed to damage caused to composite microstructure by laser drilling.  相似文献   

8.
This article presents experimental results for tensile creep behavior of orthogonal three-dimensional woven Tyranno™ ZMI fiber/Si-Ti-C-O ceramic matrix composites at 1300°–1450°C in air. The composite contained Tyranno ZMI (56% silicon, 1% zirconium, 34% carbon, and 9% oxygen) fibers with a BN coating layer to improve interface properties, and it exhibited excellent tensile properties at elevated temperature in air. For creep stresses between 60 and 140 MPa, the creep rate decreased continuously with time, with no apparent steady-state regime observed at 1300°–1450°C. Under the test conditions, the microstructure of the Tyranno ZMI fiber and Si-Ti-C-O matrix was unstable, resulting in weight loss and SiC grain growth. As a result, the viscosity of the fiber and matrix increased, because increased viscosity caused a creep rate that continuously decreased, which made steady-state creep impossible under these conditions.  相似文献   

9.
A continuum damage model based on multiaxial ductility exhaustion of accumulated creep strains is proposed to predict creep crack growth (CCG) in structural ceramics at ultra-high temperatures where it is known that power law creep operates. The paper focuses on monolithic ZrB2 ultra-high temperature ceramic (UHTC), for which a reasonable set of material creep data is available. The predominant deformation mechanism shown by ZrB2 at temperatures greater than 1800 K and at stresses above 200 MPa is power law creep. Using the creep constitutive properties that have been found for this material, the proposed methodology is applied to a representative three-point bend geometry, which is planned to be tested. Relevant Fracture Mechanics parameters such as stress intensity factor, K, and steady state creep parameter, C*, are evaluated and compared with available models. In this way the essential properties required to develop predictive damage simulations are investigated, underlining the importance of having accurate material test data.  相似文献   

10.
《Ceramics International》2021,47(24):34481-34491
This study investigates the creep deformation, damage, and rupture behaviors of 2D woven SiO2/SiO2 composites via experimental and numerical methods. In situ monotonic tensile tests and creep tests were conducted at 900 °C using a self-designed experimental system and digital image correlation. The tested specimens were characterized by X-ray computed tomography and scanning electron microscopy to conduct quantitative analyses and fracture observations. The obtained creep strain–time curves consist of primary and secondary stages, similar to the creep strain–time curves of most ceramic matrix composites. The matrix at the intersection of fiber bundles cracked under tensile loading. During subsequent creep loading, the propagation of matrix cracks, interfacial debonding, and fiber breakage in longitudinal fiber bundles were observed. At the mesoscale, the creep rupture entails a mechanism analogous to that observed in the monotonic tensile tests. Overall, the SiO2/SiO2 composites employed in this study exhibit excellent potential for long-term operation under mechanical loads at high temperatures. Next, a micromechanics-based creep model was proposed to simulate the creep behavior of the composites. In this model, the primary creep law and rule of mixtures were combined to describe the stress redistribution of various constituents and predict the deformation of the composites. In addition, the rupture life was predicted based on the global load-sharing model, two-parameter Weibull model, and shear lag model. The degradation of the matrix modulus and fiber strength was also considered to improve the accuracy of the simulation. The predicted results were in good agreement with the experimental data.  相似文献   

11.
SiCf–SiBC composites were produced using NLM 202 and Hi-Nicalon SiCf fibers. Tensile creep tests were performed under a reduced pressure of argon. These composites show a good creep resistance at 1473 K with a strain rate ranging from 10−9 to 10−7 s−1, depending on the stress level. The creep strength was improved by using Hi-Nicalon instead of NLM 202 SiCf fibers, to the extent of increasing the loadability by 50 MPa at the same operating temperature or increasing the temperature by 50 K for the same load. The damage observed in SEM micrographs and the use of the damage mechanics provide evidence that creep is governed by a damage-creep mechanism in two steps.  相似文献   

12.
《Ceramics International》2019,45(13):15920-15927
A Finite element analysis (FEA) modeling method for grinding wheel and long fiber reinforced ceramic matrix woven composites (LFRCWCs) specimen was integrated and proposed in this paper. This method was adopted to analyze the grinding process of a 2.5D woven quartz fiber reinforced silicon dioxide ceramic matrix (SiO2/SiO2) composite. Relevant grinding experiments were conducted, whose results verified the accuracy of the FEA method. Based on the FEA and experimental investigation, material removal mechanism in the grinding process of this material was discussed and the following conclusions can be drawn: 1) the modeling method that sets the interface of fibers and matrix with the same mechanical configuration as the matrix can obtain a pretty high simulation precision; 2) ceramic matrix can be easily broken and removed by fiber squeezing caused by grinding forces thus reducing the surface quality. To alleviate this damage, grinding directions should be selected as along with the fiber orientation which generates shear stress on fibers; 3) fiber debonds are caused by the inconsistent deformations of the warp and weft fiber bundles. Grinding across the axis of the wefts is a better choice to alleviate this damage.  相似文献   

13.
The creep behaviour of a SiC/Si-B-C composite at 1200 °C in argon is investigated under static and cyclic loading conditions. The SiC/Si-B-C composite consists of a multilayered self healing matrix reinforced with Nicalon fibers. It was produced via chemical vapor infiltration (CVI). The creep behaviour is examined with respect to the extent of damage created during an initial step of monotonic loading and controlled through the applied strain. The creep rate is shown to be dictated mainly by creep of fibers and interfacial debonding, whereas no significant creep induced matrix cracking was detected.  相似文献   

14.
Fiber strength retention and creep currently limit the use of polycrystalline oxide fibers in ceramic matrix composites making it necessary to develop single crystal fibers. Two-phase alumina/YAG single crystal structures in the form of monofilaments show that the room temperature tensile strength increases according to the inverse square root of the microstructure size. Therefore, microstructure stability will play a significant role in determining the ‘use temperature’ of these fibers along with its creep resistance. In this work, the effects of temperature on microstructural stability and the creep behavior of directionally solidified alumina/YAG eutectic monofilaments were studied. Microstructural stability experiments were conducted in air from 1200 to 1500°C and creep tests at temperatures of 1400 to 1700°C. Inherent microstructure stability was found to be very good, however, extraneous impurity-induced heterogeneous coarsening was significant above 1400°C. The creep strength of monofilaments with aligned microstructures were superior to ones with low aspect ratio morphologies. Mechanisms for microstructural coarsening and creep behavior are discussed.  相似文献   

15.
The processing of self-healing ceramic matrix composites by a short time and low cost process was studied. This process is based on the deposition of fiber dual interphases by chemical vapor infiltration and on the densification of the matrix by reactive melt infiltration of silicon. To prevent fibers (ex-PAN carbon fibers) from oxidation in service, a self-healing matrix made of reaction bonded silicon carbide and reaction bonded boron carbide was used. Boron carbide is introduced inside the fiber preform from ceramic suspension whereas silicon carbide is formed by the reaction of liquid silicon with a porous carbon xerogel in the preform. The ceramic matrix composites obtained are near net shape, have a bending stress at failure at room temperature around 300 MPa and have shown their ability to self-healing in oxidizing conditions.  相似文献   

16.
We present the development of an ink containing chopped fibers that is suitable for direct ink writing (DIW), enabling to obtain ceramic matrix composite (CMC) structures with complex shape. We take advantage of the unique formability opportunities provided by the use of a preceramic polymer as both polymeric binder and ceramic source. Inks suitable for the extrusion of fine filaments (<1 mm diameter) and containing a relatively high amount of fibers (>30 vol% for a nozzle diameter of 840 μm) were formulated. Despite some optimization of ink rheology still being needed, complex CMC structures with porosity of ~75% and compressive strength of ~4 MPa were successfully printed. The process is of particular interest for its ability to orient the fibers in the extrusion direction due to the shear stresses generated at the nozzle tip. This phenomenon was observed in the production of polymer matrix composites, but it is here employed for the first time for the production of ceramic matrix ones. The possibility to align high aspect ratio fillers using DIW opens the path to layer‐by‐layer design for optimizing the mechanical and microstructural properties within a printed object, and could potentially be extended to other types of fillers.  相似文献   

17.
2D-C/HfC–SiC composites were prepared by a combination of precursor infiltration and pyrolysis (PIP) and chemical vapor infiltration (CVI). Creep tests were performed at 1100°C in air under different stress conditions. Unlike most, C/SiC and SiC/SiC ceramic matrix composites only underwent primary and secondary creep stages, and the C/HfC–SiC composites underwent tertiary creep stage in the creep process. The reason was that the mechanical properties of C/HfC–SiC materials prepared by PIP + CVI methods were different from those prepared by traditional methods. The microscopic morphological analysis of the sample fracture showed that the oxidation products SiO2 and Hf–Si–O glass phases of the HfC–SiC matrix played a crack filling role in the sample during creep. In turn, it provided effective protection to the internal fibers of the sample. The creep failure of C/HfC–SiC composites in a high-temperature oxidizing atmosphere was caused by the oxidation of the fibers. The total creep process was dominated by the oxidation of carbon fibers. It is noteworthy that there was the generation of HfxSiyOz nanowires in the samples after high-temperature creep. The analysis of the experimental data showed that the creep stress had a linear negative correlation with the creep life.  相似文献   

18.
Toughening a ceramic in a ceramic matrix composite (CMC) depends on an ability of the composite to tolerate an accumulation of matrix cracks. When the reinforcement phase is carbon fiber, these cracks leave the fiber susceptible to destructive oxidation by ingress of air during high temperature exposure. Generally, a graphitic carbon interface coating is applied to carbon fibers because it provides for a weak bond between fiber and matrix that is required to promote toughening. This investigation seeks to utilize a BN coating instead of a C coating in order to promote oxidation resistance. Like graphitic carbon, BN is soft and easily cleavable. Preliminary observations that C/BN/SiC CMC's using Toray T300 carbon fibers were highly brittle and of low strength lead to a requirement of heat treating the fibers prior to the CVD of BN for toughened composites to be fabricated. It is likely heat treating removed reactive functionalities from the fiber surface to yield a weakly adhered and compliant interface.  相似文献   

19.
Tensile properties of a cross-ply glass-ceramic composite were investigated by conducting fracture, creep, and fatigue experiments at both room temperature and high temperatures in air. The composite consisted of a barium magnesium aluminosilicate (BMAS) glass-ceramic matrix reinforced with SiC fibers with a SiC/BN coating. The material exhibited retention of most tensile properties up to 1200°C. Monotonic tensile fracture tests produced ultimate strengths of 230–300 MPa with failure strains of ∼1%, and no degradation in ultimate strength was observed at 1100° and 1200°C. In creep experiments at 1100°C, nominal steady-state creep rates in the 10−9 s−1 range were established after a period of transient creep. Tensile stress rupture experiments at 1100° and 1200°C lasted longer than one year at stress levels above the corresponding proportional limit stresses for those temperatures. Tensile fatigue experiments were conducted in which the maximum applied stress was slightly greater than the proportional limit stress of the matrix, and, in these experiments, the composite survived 105 cycles without fracture at temperatures up to 1200°C. Microscopic damage mechanisms were investigated by TEM, and microstructural observations of tested samples were correlated with the mechanical response. The SiC/ BN fiber coatings effectively inhibited diffusion and reaction at the interface during high-temperature testing. The BN layer also provided a weak interfacial bond that resulted in damage-tolerant fracture behavior. However, oxidation of near-surface SiC fibers occurred during prolonged exposure at high temperatures, and limited oxidation at fiber interfaces was observed when samples were dynamically loaded above the proportional limit stress, creating micro-cracks along which oxygen could diffuse into the interior of the composite.  相似文献   

20.
Fiber bonded silicon carbide ceramic materials provide cost-advantage over traditional ceramic matrix composites and require fewer processing steps. Despite their interest in extreme environment thermostructural applications no data on long term mechanical reliability other than static fatigue is available for them. We studied the high temperature compressive strength and creep behavior of a fiber bonded SiC material obtained by hot-pressing of SiTiCO fibers. The deformation mechanism and onset of plasticity was evaluated and compared with other commercial SiC materials. Up to 1400 °C, plasticity is very limited and any macroscopic deformation proceeds by crack formation and damage propagation. A transient viscous creep stage is observed due to flow in the silica matrix and once steady state is established, a stress exponent n  4 and an activation energy Q  700 kJ mol−1 are found. These results are consistent with previous data on creep of polymer derived SiC fibers and polycrystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号