首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 334 毫秒
1.
Monolithic 3YTZP and 3YTZP containing 2.5 vol% of single‐walled carbon nanotubes (SWCNT) were fabricated by Spark Plasma Sintering (SPS) at 1250°C. Microstructural characterization of the as‐fabricated 3YTZP/SWCNTs composite shows a homogeneous CNTs dispersion throughout the ceramic matrix. The specimens have been crept at temperatures between 1100°C and 1200°C in order to investigate the influence of the SWCNTs addition on high‐temperature deformation mechanisms in zirconia. Slightly higher stress exponent values are found for 3YTZP/SWCNTs nanocomposites (n~2.5) compared to monolithic 3YTZP (n~2.0). However, the activation energy in 3YTZP (Q = 715 ± 60 kJ/mol) experiences a reduction of about 25% by the addition of 2.5 vol% of SWCNTs (Q = 540 ± 40 kJ/mol). Scanning electron microscopy studies indicate that there is no microstructural evolution in crept specimens, and Raman spectroscopy measurements show that SWCNTs preserved their integrity during the creep tests. All these results seem to indicate that the high‐temperature deformation mechanism is grain‐boundary sliding (GBS) accommodated by grain‐boundary diffusion, which is influenced by yttrium segregation and the presence of SWCNTs at the grain boundary.  相似文献   

2.
The high-temperature behavior of nanocrystalline yttria-stabilized tetragonal zirconia polycrystals (Y-TZP) with an initial grain size of 120 nm has been studied in uniaxial compression as a function of stress (5–200 MPa) and temperature (1150–1250 °C). The creep parameters, n=2 and Q=630 kJ/mol, were obtained for all experimental conditions. Evaluation of the strain rates showed that the material was more creep resistant than expected for very fine-grained materials. An interface-controlled mechanism is proposed to account for the experimental results.  相似文献   

3.
Despite the growing interest in the spark plasma sintering (SPS) of uranium dioxide, its sintering mechanisms have yet to be studied in great detail. Herein we propose a direct method to calculate the apparent activation energy for densification, Qact, and the stress exponent, n, for SPS of nearly stoichiometric UO2. A set of experiments performed at different heating rates (CHR) and different pressures levels allowed us to calculate Qact and n, respectively, though we were limited to a theoretical density between 50% to 75 %. The master sintering curve was employed as a complementary method to compare Qact. The average values were Qact =96 kJ/mol (CHR), Qact = 100 kJ/mol (MSC) and n = 1.4. We have therefore proposed grain boundary diffusion coupled with grain boundary sliding as the densification mechanism. The activation energy in SPS tends to be lower compared with that in other processes like conventional sintering (250?450 kJ/mol), creep (350?550 kJ/mol) and hot pressing (222 kJ/mol and 480 kJ/mol).This decrease could be due to the effect of the electric field combined with the higher heating rates, typical of SPS.  相似文献   

4.
Micron-sized boron carbide (B4C) powders were subjected to spark plasma sintering (SPS) under temperature ranging from 1700 °C to 2100 °C for a soaking time of 5, 10 and 20 min and their densification kinetics was determined using a creep deformation model. The densification mechanism was interpreted on the basis of the stress exponent n and the apparent activation energy Qd from Harrenius plots. Results showed that within the temperature range 1700–2000 °C, creep deformation which was controlled by grain-boundary sliding or by interface reaction contributed to the densification mechanism at low effective stress regime (n = 2,Qd = 459.36 kJ/mol). While at temperature higher than 2000 °C or at high stress regime, the dominant mechanism appears to be the dislocation climb (n = 6.11).  相似文献   

5.
Co-doped CeO2 powders with atomic ratios equal to 0.25, 1 and 3% were synthesized by the conventional mixed-oxide method. No binary compounds were detected in the CeO2–CoO system, and the Co element exists as the state of Co2+ in the samples sintered above 1000°C. A small amount of Co doping reduces sintering temperatures and promotes grain boundary mobility dramatically. Over 99.0% of relative density (R.D.) can be obtained for 0.25% Co-doped sample sintered at 1300°C for 2 h, compared with ∼ 96% of relative density for pure CeO2 sintered at 1525°C for 2 h. The results from grain growth kinetics study indicate that grain growth exponent, n, and activation energy, Q, are 3 and 697 ± 37 kJ/mol for pure CeO2, 4 and 572 ± 57 kJ/mol for 0.25% Co-doped CeO2, respectively.  相似文献   

6.
Flexural creep studies of ZrB2–20 vol% SiC ultra-high temperature ceramic were conducted over the range of 1400–1820 °C in an argon shielded testing apparatus. A two decade increase in creep rate, between 1500 and 1600 °C, suggests a clear transition between two distinct creep mechanisms. Low temperature deformation (1400–1500 °C) is dominated by ZrB2 grain or ZrB2–SiC interphase boundary and ZrB2 lattice diffusion having an activation energy of 364 ± 93 kJ/mol and a stress exponent of unity. At high temperatures (>1600 °C) the rate-controlling processes include ZrB2–ZrB2 and/or ZrB2–SiC boundary sliding with an activation energy of 639 ± 1 kJ/mol and stress exponents of 1.7 < n < 2.2. In addition, cavitation is found in all specimens above 1600 °C where strain-rate contributions agree with a stress exponent of n = 2.2. Microstructure observations show cavitation may partially accommodate grain boundary sliding, but of most significance, we find evidence of approximately 5% contribution to the accumulated creep strain.  相似文献   

7.
Four-point bending creep behavior of mullite ceramics with monomodal and bimodal distribution of grain sizes was studied in the temperature range of 1320–1400 °C under the stresses between 40 and 160 MPa. Mullite ceramic with bimodal grain size distribution was prepared using aluminum nitrate nonahydrate as alumina precursor. When γ-Al2O3 or boehmite were used as alumina precursors, mullite grains are equiaxial with mean particle size of 0.6 μm for the former and 1.3 μm for the latter alumina precursor. The highest creep rate exhibited the sample with monomodal morphology and grains in size of 0.6 μm, which is about one order of magnitude greater than that for the monomodal morphology but with grains in size of 1.3 μm. The highest activation energy for creep (Q = 742 ± 33 kJ/mol) exhibits mullite with equiaxial grains of 1.3 μm, whereas for sample with smaller equiaxial grains the activation energy is much smaller and similar to mullite ceramics with bimodal grain morphology. Intergranular fracture is predominant near the tension surface, while transgranular more planar fracture is predominant near the compression surface zone.  相似文献   

8.
High-temperature plastic deformation of laminar composites containing alternate layers of Al2O3 and a mixture of 60 vol.% Al2O3 + 40 vol.% 3 mol% Y2O3-stabilized tetragonal ZrO2 (ZTA) produced by tape casting is investigated in isostrain compression testing at temperatures between 1400 and 1500 °C. The stress exponent n and the creep activation energy Q are close to 1 and 700 kJ/mol, respectively. Microstructual observations reveal the lack of differential features in the ZTA layers and a general creep damage of the Al2O3 layers, with little microcracking by cavity coalescence even up to strains of 30%. The layer interfaces maintain their initial structural integrity after testing. An isostrain composite creep model predicts correctly the overall mechanical behavior of the laminates, which is dictated by the alumina phase via diffusional creep controlled by oxygen grain boundary diffusion.  相似文献   

9.
The plastic flow of TiCxN1−x-CoTi cermets has been investigated by uniaxial compression tests carried out in argon atmosphere at temperatures between 1100 and 1200 °C. Two different cermets, with 5 wt.% W or WC content as sintering additives, have been explored to assess the influence of the sintering additives on creep. The microstructural observations of deformed samples and the mechanical results indicate that the hard phase (ceramic grains) controls the plastic deformation. The stress exponent changes from 1 to 2 with increasing strain rate, suggesting a transition in the deformation mechanism from diffusional creep to grain boundary sliding; both with similar activation energy values of about 400 kJ/mol. This value of activation energy agrees with C diffusion in the carbonitride grains as the strain rate controlling mechanism.  相似文献   

10.
Uniaxial compressive creep behaviour of spark-plasma-sintered Al2O3/graphite particulate composites has been studied at temperature between 1250 and 1350 °C. Values of stress exponent, n, ranging from 1 to 1.4 and, activation energy, Q, of 600 ± 40 kJ/mol have been determined. With 10 vol% graphite in the composite, the creep deformation of the composite is controlled by the fine-grained Al2O3 matrix, where Coble creep has been identified as the dominant creep mechanism.  相似文献   

11.
12.
Polycrystalline ZrO2-8 mol%Y2O3 was investigated by combining several experimental techniques on identical materials sintered out of the same high purity powder. The mechanical loss spectrum (damping and elastic modulus) was measured in a large frequency and temperature range (10−2Hz–1.5kHz; −150 to 1400°C). Damping due to point defect relaxation at low temperature and to viscoelastic relaxation at high temperature was revealed. The creep resistance was investigated with four-point bending tests (stress and temperature ranges: 20–75 MPa, 1100–1290°C), indicating Nabarro-Herring creep as the main rate-controlling mechanism. Both viscoelastic deformation and creep seem to be controlled by cation diffusion. Measurements of the 96Zr tracer diffusivity by secondary ion mass spectrometry at 1125–1460°C yielded an activation enthalpy of 460 kJ/mol. Close values were obtained for creep (440 kJ/mol) and viscoelastic relaxation (530 kJ/mol). Finally, the ionic DC-conductivity of these electrolytes was measured with high accuracy in the range 300–1250°C.  相似文献   

13.
Silicon nitride (Si3N4) ceramics were fabricated by gas pressure sintering (GPS) using four sintering additives: Y2O3–MgO, Y2O3–MgF2, YF3–MgO, and YF3–MgF2. The phase composition, grain growth kinetics, mechanical properties, and thermal conductivities of the Si3N4 ceramics were compared. The results indicated that the reduction of YF3 on SiO2, induced a high Y2O3/SiO2 secondary phase ratio, which improved the thermal conductivity of the Si3N4 ceramics. The depolymerization of F atom reduces the diffusion energy barrier of solute atom and weakens the viscous resistance of anion group, which was beneficial to grain boundary migration. Besides exhibiting a lower grain growth exponent(n = 2.5)and growth activation energy (Q = 587.94 ± 15.35 kJ/mol), samples doped with binary fluorides showed excellent properties, including appreciable thermal conductivity (69 W m−1 K−1), hardness (14.63 ± 0.12 GPa), and fracture toughness (8.75 ± 0.18 MPa m1/2), as well as desirable bending strength (751 ± 14 MPa).  相似文献   

14.
A study has been carried out to examine the effect of LaB6 addition on the compressive creep behavior of ZrB2-SiC composites at 1300–1400°C under stresses between 47 and 78 MPa in laboratory air. The ZrB2-20 vol% SiC composites containing LaB6 (10% in ZSBCL-10 and 14% in ZSBCL-14) besides 5.6% B4C and 4.8% C as additives were prepared by spark plasma sintering at 1600°C. Due to cleaner interfaces and superior oxidation resistance, the ZSBCL-14 composite has exhibited a lower steady-state creep rate at 1300°C than the ZSBCL-10. The obtained stress exponent (n ∼ 2 ± 0.1) along with cracking at ZrB2 grain boundaries and ZrB2-SiC interfaces are considered evidence of grain boundary sliding during creep of the ZSBCL-10 composite. However, the values of n ∼ 1 and apparent activation energy ∼700 kJ/mol obtained for the ZSBCL-14 composite at 1300–1400°C suggest that ZrB2 grain boundary diffusion is the rate-limiting mechanism of creep. The thickness of the damaged outer layer containing cracks scales with temperature and applied stress, indicating their role in facilitating the ingress of oxygen causing oxide scale growth. Decreasing oxidation-induced defect density with depth to a limit of ∼280 μm, indicates the predominance of creep-based deformation and damage at the inner core of samples.  相似文献   

15.
The high-temperature compression creep of additive-free β/α silicon carbide ceramics fabricated by rapid hot pressing (RHP) was investigated. The creep tests were accomplished in vacuum at temperature range 1500 °C–1750 °C and compressive loads of 200 MPa to 400 MPa. Under investigated condition the RHP ceramics possessed the lowest creep rate reported in the literature. The observed strain rates changed from 2.5 × 10?9 s?1 at 1500 °C and a lowest load of 275 MPa to 1.05 × 10?7 s?1 at 1750 °C and a highest load of 400 MPa. The average creep activation energy and the stress exponent remain essentially constant along the whole range of investigated parameters and were 315 ± 20 kJ?mol?1, and 2.22 ± 0.17, respectively. The suggested creep mechanism involves GB sliding accommodated by GB diffusion and β?α SiC phase transformation.  相似文献   

16.
Zeolite Li-BEA and Na-BEA with Si/Al = 3–4 were synthesized by alumination and ion exchange, then characterized by XRD, TG–DSC and NMR. The enthalpies of formation and dehydration of Li and Na ion exchanged zeolite beta are investigated by high temperature oxide melt solution calorimetry. For Li-BEA, the formation enthalpies of formation from oxides at 25 °C are 25.6 ± 1.7 kJ/mol TO2 for the dehydrated zeolite and −8.45 ± 0.94 kJ/mol TO2 for the fully hydrated zeolite; for Na-BEA they are −2.4 ± 0.6 kJ/mol TO2 for the dehydrated and −17.8 ± 1.0 kJ/mol TO2 for the fully hydrated zeolite. The integral dehydration enthalpy at 25 °C is 33.2 ± 1.8 kJ/mol H2O for Li-BEA and 16.5 ± 1.1 kJ/mol H2O for Na-BEA. The partial molar dehydration enthalpies of both Li-BEA and Na-BEA are a linear function of water content. Molecular mechanics simulations explore the cation and water molecule positions in the framework at several water contents.  相似文献   

17.
The present paper describes compressive creep behavior of cubic 8 mol% yttria stabilized zirconia+10 mol% La2O3 (fabricated by Spark Plasma Sintering) in the temperature range of 1300–1330 °C at a stress level of 45–78 MPa in vacuum. The pre- and post-creep microstructures, relative magnitudes of the stress exponent (n=1.7–2.1) and the activation energy (540–580 kJ/mol) suggest that grain boundary sliding aided by inter-diffusion of La and Zr leading to the formation of pyrochlore La1.6Y0.4Zr2O7 phase at the grain boundaries during creep is the active creep mechanism in this composite.  相似文献   

18.
Aluminosilicates of three compositions with mullite as the major phase were synthesized by a sol-gel process and characterized with bulk and microchemical analyses and microstructural observation. An apparatus for measuring the compressive creep up to 1900 K with a sensitivity of ±1 μm was constructed and used to measure the creep of singlephase mullite, mullite with second-phase glass, and mullite with second-phase corundum. Measurements in air at stresses of 15 to 100 MPa and temperatures of 1471 to 1724 K determined that samples with second-phase glass crept more rapidly than single-phase mullite or mullite with secondphase corundum. The apparent creep activation energies determined at 100 MPa were 742 kJ/mol for the mullite containing glass, 819 kJ/mol for the single-phase mullite, and 769 kJ/mol for the mullite with second-phase corundum. The stress exponents determined at 1724 K were 1.6 for the mullite plus glass, 1.5 for the single-phase mullite, and 1.2 for the mullite with α-Al2O3. The creep behavior of the aluminosilicates containing glass were consistent with rate control by the viscous flow of the glass and the measured creep rates were in good agreement with creep rates calculated from a model by Dryden. The creep behavior of the completely crystalline aluminosilicates was consistent with rate control by diffusional creep.  相似文献   

19.
《Ceramics International》2023,49(1):126-133
In this work, the 0.9Al2O3-0.1TiO2 ceramic sample with good microwave dielectric properties and complex structures can be well fabricated by digital light processing (DLP). A relationship between dispersant content and rheological behavior of 0.9Al2O3-0.1TiO2 slurry was explored. When dispersant content was 3.0 wt%, 0.9Al2O3-0.1TiO2 slurry with high solid loading (50 vol%) and low viscosity (2.9 Pa s) could be obtained. 0.9Al2O3-0.1TiO2 ceramic parts with high accuracy were fabricated successfully by adding 3.0 wt% photoinitiator under 600 mJ/cm2 exposure energy. With the increase of sintering temperature from 1400 °C to 1600 °C, relative density, dielectric constant (εr), and quality factor (Q × f) of 0.9Al2O3-0.1TiO2 ceramic sample increased first and then decreased, and all reached the maximum value at 1550 °C due to the uniformity and densification of microstructures. The temperature coefficient of resonant frequency (τf) value showed an almost monotonous increase, changing from negative to positive, and near-zero τf value at 1550 °C. In addition, 0.9Al2O3-0.1TiO2 ceramic samples sintered at 1550 °C fabricated by DLP method presented much better microwave dielectric properties: εr = 11.30 ± 0.02, Q × f = 35,345 ± 143 GHz (@~12 GHz), τf = 2.16 ± 0.21 ppm/°C than that of by dry pressing method: εr = 11.16 ± 0.11, Q × f = 30,195 ± 257 GHz (@~12 GHz), τf = 4.45 ± 0.13 ppm/°C, especially the Q × f value achieved a 17% increase. Accordingly, DLP technique, which has advantages of producing relatively high properties and complex geometry of microwave dielectric ceramics as well as without extra high-cost mold, greatly satisfies application requirements.  相似文献   

20.
High-purity undoped nonstoichiometric BaTiO3 powder of TiO2-excess and BaO-excess has been pressureless-sintered in the range of 1215–1340°C using conventional tube furnace. Low temperature sintering of the TiO2-excess composition results in the characteristic plate-like grains grown along the {111} plane. Surface energy anisotropy is proposed to account for the anomalous microstructural development and low final sintered density. The activation enthalpy values (ΔH) deduced from isothermal sintering are 522±130 and 396±16 kJ mol for the TiO2-excess and BaO-excess composition, respectively. The rate-determining mechanism for the solid-state sintering of the undoped nonstoichiometric BaTiO3 powder is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号