首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Carbon–carbon (C–C) composites are ideal for use as aerospace vehicle structural materials; however, they lack high‐temperature oxidation resistance requiring environmental barrier coatings for application. Ultra high‐temperature ceramics (UHTCs) form oxides that inhibit oxygen diffusion at high temperature are candidate thermal protection system materials at temperatures >1600°C. Oxidation protection for C–C composites can be achieved by duplicating the self‐generating oxide chemistry of bulk UHTCs formed by a “composite effect” upon oxidation of ZrB2–SiC composite fillers. Dynamic Nonequilibrium Thermogravimetric Analysis (DNE‐TGA) is used to evaluate oxidation in situ mass changes, isothermally at 1600°C. Pure SiC‐based fillers are ineffective at protecting C–C from oxidation, whereas ZrB2–SiC filled C–C composites retain up to 90% initial mass. B2O3 in SiO2 scale reduces initial viscosity of self‐generating coating, allowing oxide layer to spread across C–C surface, forming a protective oxide layer. Formation of a ZrO2–SiO2 glass‐ceramic coating on C–C composite is believed to be responsible for enhanced oxidation protection. The glass‐ceramic coating compares to bulk monolithic ZrB2–SiC ceramic oxide scale formed during DNE‐TGA where a comparable glass‐ceramic chemistry and surface layer forms, limiting oxygen diffusion.  相似文献   

2.
A.G. Odeshi  H. Mucha 《Carbon》2006,44(10):1994-2001
A porous two-dimensional C/C composite was produced via the polymer pyrolysis route using phenolic resin as the matrix precursor and polyacrilonitrile- (PAN-) or pitch-based carbon fibres as reinforcement. The resulting C/C composites were then densified using a modified polysilane followed by pyrolysis to convert the polymer into silicon carbide, sealing the pores in the C/C composite. Aiming to increase the ceramic yield of the infiltrated polysilane and to reduce its volumetric shrinkage during pyrolysis the polymer’s curing behaviour was modified by catalytic addition of 0.1% dicobaltoctacarbonyl [Co2(CO)8]. The densification procedure is very efficient in sealing cracks in the C/C composite with SiC. The obtained carbon fibre reinforced C/SiC dual matrix composites were subjected to flexural tests and dynamic mechanical analysis. The flexural and visco-elastic properties of the composite are dominated by the strength of the fibre/matrix interface rather than by the fibre strength or modulus. A correlation between the mechanical loss factor (tan δ) and the fracture behaviour of the composite is suggested.  相似文献   

3.
We have used TEM to study the microstructure of friction surface of carbon fibre/carbon–silicon carbide composites brake discs after multi braking stop by using organic pads. A friction surface layer was developed consistently on the top of Si regions of the composites, but inconsistently on that of SiC and C. Inside the layer, amorphous silicon/silicon oxides appeared extensively with various non-metallic and metallic crystallites dispersed inside with sizes ranging from a few nanometers to several microns. A coherent interface between the friction layer and the composite surface was established under the braking conditions, whilst its sustainability varied notably in SiC and C regions. Microcracking near the friction surface appeared in SiC and Cf/C regions largely due to the extensive ductile deformation of SiC and weak interfaces between C and Cf. Material joining mechanisms were discussed to enlighten the friction transfer layer development on the surface of the composite discs.  相似文献   

4.
《Ceramics International》2021,47(24):34783-34793
C/C–SiC composites are considered to be strong candidates for the new generation of high-speed train brake discs. To achieve a better application, it is necessary to improve understanding of the oxidation behaviour of C/C–SiC brake discs after a full-scale bench test rig. In this study, full-scale braking bench tests for C/C–SiC self-mated brake pairs were conducted under a braking speed of 350–420 km/h and a braking pressure of 17–28 kN. Moreover, the oxidation behaviour and mechanisms of the C/C–SiC brake discs during the practical braking process were investigated. The results indicate that the oxidation behaviour is highly dependent on the friction surface region of the C/C–SiC brake disc owing to the distribution of microcracks, the formation of friction films, the difference in temperature, and the contact content with O2. Specifically, the oxidation depths of the friction layer on the inner circumferential surface, middle friction surface, and outer circumferential surface were 278.3, 252.1, and 359.9 μm, respectively. Furthermore, the oxidation reaction preferentially occurs in the active area of the C fibre and pyrolytic carbon (PyC) during the braking process.  相似文献   

5.
《Ceramics International》2022,48(1):525-539
C/C-BN composites and Cf/BN/PyC composites exhibiting different structures for pyrolytic carbon (PyC) and boron nitride (BN) were studied comparatively to determine their oxidation behavior. This study used five types of samples. Porous C/C composites were modified with silane coupling agents (APS) and then fully impregnated in water-based slurry of hexagonal boron nitride (h-BN); the resulting C/C-BN preforms were densified by depositing PyC by chemical vapor infiltration (CVI), resulting in three types of C/C-BN composites. The other two Cf/BN/PyC composites were obtained by depositing a BN interphase and PyC in carbon fiber preforms by CVI; one was treated with heat, and the other was not. This study was focused on determining how the PyC deposition mechanism, morphology and pore structure were affected by the method of BN introduction. In the 600–900 °C temperature range, the Cf/BN/PyC composites and C/C composites underwent oxidation via a mixed diffusion/reaction mode. The C/C-BN composites had a different pore structure due to the formation of nodules comprising h-BN particles; both interfacial debonding and cracking were reduced, resulting in higher resistance to gas diffusion, lower oxidation rate and larger activation energy (Ea) in the temperature range 600–800 °C. In addition, the mechanism for oxidation of C/C-BN composites gradually exhibited diffusion control at 800–900 °C because the formation of h-BN oxidation products healed the defects. The oxidation mechanism was more dependent on pore structure than on BN structure or content.  相似文献   

6.
Zirconium diboride and boron carbide particles were used to improve the ablation resistance of carbon–carbon (C–C) composites at high temperature (1500 °C). Our approach combines using a precursor to ZrB2 and processing them with B4C particles as filler material within the C–C composite. An oxyacetylene torch test facility was used to determine ablation rates for carbon black, B4C, and ZrB2–B4C filled C–C composites from 800 to 1500 °C. Ablation rates decreased by 30% when C–C composites were filled with a combination of ZrB2–B4C particles over carbon black and B4C filled C–C composites. We also investigated using a sol–gel precursor method as an alternative processing route to incorporate ZrB2 particles within C–C composites. We successfully converted ZrB2 particles within C–C composites at relatively low temperatures (1200 °C). Our ablation results suggest that a combination of ZrB2–B4C particles is effective in inhibiting the oxidation of C–C composites at temperatures greater than 1500 °C.  相似文献   

7.
C/C–ZrC composites were prepared by isothermal chemical vapor infiltration (ICVI) combined with reactive melt infiltration (RMI). The ablation behavior of the C/C–ZrC was investigated using an oxyacetylene flame. The effect of ablation time on the microstructure and mechanical property evolution of the composite was studied. The results showed that as the ablation time prolonged, the linear and mass ablation rates of the composite increased firstly and then stabilized. After 15 s ablation, the flexural strength and modulus of the C/C–ZrC were interestingly increased by 141.8% and 40.9%, which reached 138.42 MPa and 6.45 GPa, respectively. During ablation, the preferential oxidation effect of ZrC could mitigate the oxidation of pyrolytic carbon (PyC) and carbon fibers, and the volume change induced by the ZrC →ZrO2 phase transformation could weaken its bonding with PyC, which was beneficial for releasing the internal residual stresses of the C/C–ZrC and then contributed to the mechanical performance improvement.  相似文献   

8.
Carbon–carbon (C/C) composite is one of the best ceramic matrix composite due to its high mechanical properties and applications at control environments in various sectors. Carbon–carbon composite is made of woven carbon fibers; carbonaceous polymers and hydrocarbons are used as matrix precursors. These composites generally have densities <2.0 g/cm3 even after densification. C/C composites have good frictional properties and thermal conductivity at high temperature. Also C/C composite can be used as brake pads in high‐speed vehicles. In spite of various applications, C/C composites are very much prone to oxidation at high temperature. Therefore, C/C composites must be protected from oxidation for the use at high temperature.  相似文献   

9.
Abstract

Polyacrylonitrile based carbon fibres were submitted to nitric acid oxidation treatments to improve the interfacial adhesion of the carbon fibre reinforced polyimide (CF/PI) composite. The carbon fibre surfaces were characterised by X-ray photoelectron spectroscopy. Nitric acid oxidation not only affects the oxygen concentration, but also produces an appreciable change in the nature of the chemical functions, namely the conversion of hydroxy type oxygen into carboxyl functions. Nitrogen concentration of nitric acid oxidation treated carbon fibre is ~1·2 times higher compared with untreated one. The mechanical and tribological properties of the CF/PI composites treated with nitric acid oxidation were investigated. Results showed that the tensile strength of the CF/PI composites improved remarkably due to nitric acid treatment along with enhancement in friction and wear performance.  相似文献   

10.
A low-density carbon/carbon (C/C) composite/silane coupling agent/hexagonal boron nitride (h-BN) hybrid reinforcement was prepared by grafting polyethyleneimine (PEI)-encapsulated modified h-BN fillers onto a carbon fiber surface using 3-aminopropyltriethoxysilane (APS) as the connection to improve the distribution uniformity of h-BN fillers in quasi-three-dimensional reinforcements and the interfacial properties between the fibers/pyrocarbon (PyC) in the C/C-BN composites obtained after densification by chemical vapor infiltration (CVI). The microstructure and chemical components of the hybrid reinforcement were investigated. The transmission electron microscopy (TEM) sample was prepared using a focused-ion beam (FIB) for the h-BN/PyC interfacial zone. The interlaminar shear strength (ILSS) and impact toughness were analyzed to inspect the composites’ interfacial properties. The results show that APS and h-BN are uniformly grafted on the fiber surface in the chopped fiber web inside the C/C composite without a density gradient, and agglomeration occurred and significantly increasing the fiber surface roughness. The highly ordered h-BN basal plane may affect the order degree of PyC near the h-BN/PyC interface. The addition of h-BN reduces the PyC texture near it, causing the annular cracks to disappear gradually. The lower PyC texture and the rougher fiber surface strengthen the interfacial bond of the fiber/matrix. Consequently, the ILSS strength of the C/C-BN composites first increases and then decreases as the h-BN filler content increases and is always higher than that of the C/C composite, while the addition of h-BN fillers weakens its impact toughness. When the h-BN content in the C/C-BN composite is 10 vol%, the ILSS of the C/C-BN composites was 15.6% higher than that of the C/C composites. However, when the h-BN content is excessive (15 vol%), the densely grafted h-BN will bridge each other, reducing the subsequent CVI densification efficiency to form a loose interface, causing a decrease in the shear strength.  相似文献   

11.
《应用陶瓷进展》2013,112(8):471-477
Abstract

Carbon fibre reinforced SiOC composites (denoted as Cfibre/SiCfillers/SiOC) were prepared by slurry coating and polymer infiltration pyrolysis (PIP) process. Low viscosity liquid polysiloxane (PSO) and SiC powder were combined at a 1∶1 weight ratio to produce a blend (S-PSO), which was employed as matrix source. Heat treated carbon fibre fabric was adopted as the reinforcement. The lamination process was determined on the basis of cure and rheology investigations on S-PSO. The effects of PIP cycles and temperature of heat treatment of the carbon fibre on the mechanical properties of Cfibre/SiCfillers/SiOC were examined. The results indicate that composites using carbon fibres annealed at 1700°C as reinforcement reached a maximum flexural strength of 300 MPa after six PIP cycles. The resistance of the Cfibre/SiCfillers/SiOC composite to oxidation was also evaluated. Without any protective coatings, the composite retained 60% of its strength after oxidation at 800°C for 3 h in a static air environment.  相似文献   

12.
This study investigated the effect of short carbon fiber (Cf) on the oxidation behavior of ZrB2–SiC composites with fiber volume fractions in the range of 0–20%. Precisely, highly dense composite compacts were manufactured by hot-press process at 2000 °C and 30 MPa for 60min. The addition of Cf increased the relative density of sintered composite The oxidation treatment at 1600 °C in air tube furnace for 0.5 h revealed that oxidation rate of ZrB2–SiC-Cf composites decreased from 292.4 μm/h to 77.6 μm/h (almost 73.5% decline), when the content of Cf changed from 0 to 20%. Moreover, Cf played important roles in blocking and deflecting oxygen diffusion during the oxidation process, which provided a local reduction environment of oxidation products.  相似文献   

13.
A novel organometallic zirconium polymer was synthesized through the copolycondensation using n-butyllithium, 1,4-diethynylbenzene, phenylacetylene and zirconium tetrachloride as raw materials. Then biomorphic C–ZrC–SiC composites were fabricated from corn stover templates by precursor infiltration and pyrolysis process using hybrid polymeric precursors containing the organometallic zirconium polymer and polycarbosilane. The microstructure, mechanical properties and oxidation resistance of the composites were investigated. With ZrC content increasing, the mechanical properties of the composites were enhanced due to dispersion strengthening and grain fining of the homogeneously dispersed ZrC nanoparticles. The oxidation behavior of C–SiC–ZrC indicated that the oxidation resistance of the composite was reduced at 1000 °C but improved at 1500 °C with the increase of ZrC content. The improved oxidation resistance was mainly attributed to a proper ZrC content, the formation of ZrSiO4 layer on the surface of the composite, and its matrix microstructure characterized by a nano-sized dispersion of ZrC–SiC phases.  相似文献   

14.
《Ceramics International》2022,48(6):8314-8324
At present, many scholars are experimentally investigating the grinding performance of ceramic matrix composites (C–SiCs). However, accurately reflecting the microscopic mechanisms of crack initiation and extension and the material removal mechanism (MRM) is difficult. To research the micro-MRM of C–SiCs, a theoretical model (TTM) and a numerical simulation model (NSM) were established in this study and were proven to be reliable by experiments. The TTM was established according to the kinematics and dynamics of a single abrasive particle. In the procedure of establishing the NSM, the SiC matrix (SiCM) and carbon fibre reinforcement (CFRT) were each modelled based on the internal structure characteristics of C–SiCs and then combined by an interface layer. The TTM, NSM and verification experiments all showed that fibre pull-out, fibre outcrop, matrix cracking and interfacial debonding were the basic defects in the C–SiCs. As the grinding depth (ap) increased, the grinding performance of the C–SiCs gradually deteriorated. The material removal characteristics of C–SiCs can be directly modelled at the microlevel by the NSM. The NSM showed that the grinding force fluctuated periodically because the CFRT and SiCM have different properties. High stresses occurred mainly in the SiCM. This research can supply a scientific basis for understanding the micro-MRM of C–SiCs and provide important guidance for the high-quality grinding of C–SiCs.  相似文献   

15.
A single-layer radar-absorbing structure active in the X-band (8.2?GHz to 12.4?GHz) was demonstrated by blending SiC fibres with an AlPO4 matrix material. The as-prepared SiCf/AlPO4 composites were oxidized at 1273?K for several hours to investigate the effects of oxidation on the dielectric and wave-absorbing properties. Scanning and transmission electron microscopy were used to characterize the morphology and microstructure of the composites. The AlPO4-SiO2 solid solution during oxidation promoted the formation of a complete carbon layer on the SiC fibre surface. The real and imaginary parts of the SiCf/AlPO4 composites increased from 4.2–4.4 to 5.9–7.1 and from 0.08–0.2 to 3.9–5.2, respectively, with increasing oxidation time from 0 to 10?h, respectively. When the thickness of the composites increased from 2.9?mm to 3.3?mm, the wave-absorbing property noticeably improved due to the formation of a carbon layer on the SiC fibre surface after oxidation.  相似文献   

16.
The mechanical and dynamic properties of oxidized carbon fibre and butadiene–styrene thermoplastic elastomer (SBS) composites were studied as a function of the level of fibre oxidation and in comparison with the properties of composites reinforced with untreated commercial carbon fibre. As a general rule, fibre oxidation gives rise to materials with improved mechanical properties—greater tensile and tear strengths. The improvements accomplished depend on the degree of fibre oxidation. The effects of long exposure times to oxidizing agents were tested on the experimental samples, i.e. increase in the number of functional surface groups and loss in mechanical strength due to a decrease in the L/d ratio, properties which act in opposite directions in the composite. Storage modulus retention with increasing strain amplitude is directly proportional to the number of functional groups incorporated into the fibre surface, whereas at low strain amplitude it is proportional to fibre strength, measured in terms of the L/d ratio after processing. It is suggested that improved adhesion at the matrix–fibre interface is obtained through the functional groups of the oxidized fibre. As a consequence of fibre–matrix interface and at any frequency, the damping peak temperature is shifted towards higher ranges and at the same time the apparent activation energy of the relaxation process is observed to increase.  相似文献   

17.
《Ceramics International》2022,48(7):9483-9494
In this work, quasi-isotropic chopped carbon fiber-reinforced pyrolytic carbon and silicon carbide matrix (Cf/C–SiC) composites and chopped silicon carbide fiber-reinforced silicon carbide matrix (SiCf/SiC) composites were prepared via novel nondamaging method, namely airlaid process combined with chemical vapor infiltration. Both composites exhibit random fiber distribution and homogeneous pore size. Young's modulus of highly textured pyrolytic carbon (PyC) matrix is 23.01 ± 1.43 GPa, and that of SiC matrix composed of columnar crystals is 305.8 ± 9.49 GPa in Cf/C–SiC composites. Tensile strength and interlaminar shear strength of Cf/C–SiC composites are 52.56 ± 4.81 and 98.16 ± 24.62 MPa, respectively, which are both higher than those of SiCf/SiC composites because of appropriate interfacial shear strength and introduction of low-modulus and highly textured PyC matrix. Excellent mechanical properties of Cf/C–SiC composites, particularly regarding interlaminar shear strength, are due to their quasi-isotropic structure, interfacial debonding, interfacial sliding, and crack deflection. In addition to the occurrence of crack deflection at the fiber/matrix interface, crack deflection in Cf/C–SiC composites takes also place at the interface between PyC–SiC composite matrix and the interlamination of multilayered PyC matrix. Outstanding mechanical properties of as-prepared Cf/C–SiC composites render them potential candidates for application as thermal structure materials under complex stress conditions.  相似文献   

18.
The aim of this work is to investigate the thermal conversion of carbon fibres/polysiloxane composites to carbon fibres/ceramic composites. The conversion mechanism of four different resins to the ceramic phase in the presence of carbon fibres is investigated. The experiments were conducted in three temperature ranges, corresponding to composite manufacturing stages, namely up to 160 °C, 1000 °C and finally 1700 °C.The study reveals that the thermal conversion mechanism of pure resins in the presence of carbon fibres is similar to that without fibres up to 1000 °C. Above 1000 °C thermal decomposition occurs in both solid (composite matrix) and gas phases, and the presence of carbon fibres in resin matrix produces higher mass losses and higher porosity of the resulting composite samples in comparison to ceramic residue obtained from pure resin samples. XRD analysis shows that at temperature of 1700 °C composite matrices contain nanosized silicon carbide. SEM and EDS analyses indicate that due to the secondary decomposition of gaseous compounds released during pyrolysis a silicon carbide protective layer is created on the fibre surface and fibre–matrix interface. Moreover, nanosized silicon carbide filaments crystallize in composite pores.Owing to the presence of the protective silicon carbide layer created from the gas phase on the fibre–matrix interface, highly porous C/SiC composites show significantly high oxidation resistance.  相似文献   

19.
The catalytic effects of potassium acetate (KAC) and calcium acetate (CaAC) on the oxidation of carbon/carbon composites (C/C composites) used in aircraft brake system have been characterized. Potassium exhibited a very strong catalytic effect on the oxidation of the selected carbon samples, including C/C composite blocks impregnated with aqueous KAC solution and graphite powder physically mixed with KAC powder. The initial amount of catalyst loading and the pre-treatment in inert gas were found to affect its catalytic effectiveness. Impregnated calcium was also a good catalyst for the oxidation of C/C composites, but its effectiveness is much lower than that of potassium and is much less sensitive to catalyst loading amount and pre-treatment. Calcium acetate physically mixed with graphite powder only showed a slight catalytic effect. The experimental results suggested that the interfacial contact between catalyst and carbon is the key factor determining catalytic effectiveness, in agreement with previous studies using porous carbon materials. Due to its unique wetting ability and mobility on the carbon surface, potassium can form and maintain such contact with carbon and is, therefore, more effective in the C-O2 reaction than calcium. The formation and development of such contact, which can also be affected by catalyst loading and pre-treatment process, can explain well the influence of these experimental conditions on the catalytic effect of potassium. The decreasing trend of reactivity with increasing burn-off in calcium-catalyzed oxidation is a result of interfacial contact loss because calcium does not have the necessary mobility to maintain such contact during reaction.  相似文献   

20.
《Ceramics International》2023,49(6):9130-9137
A SiC-nanowire-modified SiC–Si (SiCnw@SiC–Si) coating was prepared for carbon-fibre-reinforced carbon-matrix (C/C) composites using a two-step method based on thermal evaporation and gaseous silicon infiltration, and the effects of SiC nanowires on the oxidation and ablation behaviours of the coated samples were studied. Oxidation tests conducted at 1500 °C revealed that the weight loss of the SiC–Si-coated C/C composite was 15.85% after 6 h, whereas the SiCnw@SiC–Si-coated C/C composite experienced a significantly lower weight loss of 1.27% after 50 h. Ablation tests suggested that the mass and linear ablation rates of the SiCnw@SiC–Si-coated C/C composite were 0.05 mg/s and 0.09 μm/s, respectively; they were reduced by 78.26 and 92.74%, respectively, compared with those of the SiC–Si-coated C/C composite. Careful characterisation suggested that the network structure of the SiC nanowires in the SiC–Si phase can suppress crack propagation and firmly attach to the coating surface to enhance the interfacial adhesion between the coating and substrate, leading to improved anti-oxidation and anti-ablation properties. The SiCnw@SiC–Si coating could offer a technological foundation for preventing the oxidation and ablation of C/C composites in aerospace engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号