首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ni‐Co bimetallic and Ni or Co monometallic catalysts prepared for CO2 reforming of methane were tested with the stimulated biogas containing steam, CO2, CH4, H2, and CO. A mix of the prepared CO2 reforming catalyst and a commercial steam reforming catalyst was used in hopes of maximizing the CO2 conversion. Both CO2 reforming and steam reforming of CH4 occurred over the prepared Ni‐Co bimetallic and Ni or Co monometallic catalysts when the feed contained steam. However, CO2 reforming did not occur on the commercial steam reforming catalyst. There was a critical steam content limit above which the catalyst facilitated no more CO2 conversion but net CO2 production for steam reforming and water‐gas shift became the dominant reactions in the system. The Ni‐Co bimetallic catalyst can convert more than 70% of CO2 in a biogas feed that contains ~33 mol% of CH4, 21.5 mol% of CO2, 12 mol% of H2O, 3.5 mol% of H2, and 30 mol% of N2. The H2/CO ratio of the produced syngas was in the range of 1.8‐2. X‐ray absorption spectroscopy of the spent catalysts revealed that the metallic sites of Ni‐Co bimetallic, Ni and Co monometallic catalysts after the steam reforming of methane reaction with equimolar feed (CH4:H2O:N2 = 1:1:1) experienced severe oxidation, which led to the catalytic deactivation.  相似文献   

2.
A series of Mg‐modified SBA‐15 mesoporous silicas with different MgO contents were successfully synthesized by a simple one‐pot synthesis method and further impregnated with Ni. The Mg‐modified SBA‐15 materials and supported Ni catalysts were characterized by N2 physisorption (BET), X‐ray diffraction (XRD), temperature‐programmed desorption of CO2 (CO2‐TPD), temperature‐programmed H2 reduction (H2‐TPR), and temperature‐programmed hydrogenation (TPH) techniques and used for methane dry reforming with CO2. CO2‐TPD results proved that the addition of Mg increased the total amount of basic sites which was responsible for the enhanced catalytic activity over the Mg‐modified Ni catalyst. The excellent catalytic stability of Ni/8Mg‐SBA‐15 was ascribed to less coking and higher stability of the Ni particle size due to the introduction of Mg.  相似文献   

3.
Autothermal reforming (ATR) of methane was carried out over nanocrystalline Al2O3‐supported Ni catalysts with various Ni loadings. Mesoporous nanocrystalline γ‐Al2O3 powder with high specific surface area was prepared by the sol‐gel method and employed as support for the nickel catalysts. The prepared samples were characterized by X‐ray diffraction, Brunauer‐Emmett‐Teller, temperature‐programmed reduction, temperature‐programmed hydrogenation, and scanning electron microscopy techniques. It is demonstrated that the methane conversion increased with increasing in Ni content and that the catalyst with 25 wt % Ni exhibited the highest activity and a stable catalytic performance in the ATR process, with a low degree of carbon formation. Furthermore, the effects of the reaction temperature, the calcination temperature, the steam/CH4 and O2/CH4 ratios, and the gas hourly space velocity on the catalytic performance of the 25 % Ni/Al2O3 catalyst were investigated.  相似文献   

4.
《Fuel》2005,84(7-8):869-874
H2 production was studied through steam reforming of a clean model biogas in a fluidized-bed reactor followed by two stages of CO shift reactions (fixed-bed reactors). The steam reforming of biogas was performed over 11.5 wt.% Ni/Al2O3 and a molar CH4/CO2 ratio of 1.5 was employed as clean model biogas. Excess steam resulted in strong inhibition of carbon formation and an almost complete CH4 (>98%) conversion was achieved.To optimise H2 production, CO shift reactions were carried out at high (523–723 K) and low temperatures (423–523 K) using commercial catalysts, based on Cu/Fe/Cr and Cu/Zn, respectively. Increasing steam concentrations led to a lean CO, high H2 product. The final product compositions following low temperature CO shift reaction (steam to dry gas ratio of 1.5 at 483 K) yielded H2 at 68% and a CO concentration of 0.2% (equivalent to CO conversion of >99%).  相似文献   

5.
A structured reaction system in the form of an Ni‐MgO catalyst reduced to nanoscale particle size and coated on a metallic monolith proved to be an active and stable system for methane steam reforming under a steam‐to‐carbon ratio of 1.5 and a temperature of 700 °C. The catalyst‐coated monolith exhibited higher stability and much higher CH4 conversion than the same catalyst in a catalyst particle bed reaction system. The high activity is attributed to the properties of the metal monolith and to the small size of the catalyst particles on the coating, while the stability is ascribed to the NiO‐MgO solid solution formed in the Ni‐MgO catalyst. These results are better than the corresponding ones obtained with a conventional Ni‐Al2O3 catalyst reported previously [1] and comparable to the ones presented in the literature, with the advantage of working under a low steam‐to‐carbon ratio.  相似文献   

6.
This paper reports the performance of porous Gd-doped ceria (GDC) electrochemical cells with Co metal in both electrodes (cell No. 1) and with Ni metal in the cathode and Co metal in the anode (cell No. 2) for CO2 decomposition, CH4 decomposition, and the dry reforming reaction of a biogas with CO2 gas (CH4 + CO2 → 2H2 + 2CO) or with O2 gas in air (3CH4 +?1.875CO2 +?1.314O2 → 6H2 +?4.875CO +?0.7515O2). GDC cell No. 1 produced H2 gas at formation rates of 0.055 and 0.33?mL-H2/(min?m2-electrode) per 1?mL-supplied gas/(min?m2-electrode) at 600?°C and 800?°C, respectively, by the reforming of the biogas with CO2 gas. Similarly, cell No. 2 produced H2 gas at formation rates of 0.40?mL-H2/(min?m2) per 1?mL-supplied gas/(min?m2) at 800?°C from a mixture of biogas and CO2 gas. The dry reforming of a real biogas with CO2 or O2 gas at 800?°C proceeded thermodynamically over the Co or Ni metal catalyst in the cathode of the porous GDC cell. Faraday's law controlled the dry reforming rate of the biogas at 600?°C in cell No. 2. This paper also clarifies the influence of carbon deposition, which originates from CH4 pyrolysis (CH4 → C + 2H2) and disproportionation of CO gas (2CO → C + CO2), on the cell performance during dry reforming. The dry reforming of a biogas with O2 molecules from air exhibits high durability because of the oxidation of the deposited carbon by supplied air.  相似文献   

7.
A study of the unsteadiness problem of the ignition of static premixed gases that contain CH4 and steam by a catalytic hot sphere and a non-catalytic hot sphere were conducted, and a comparison between calculated and experimental results was done in the paper. The catalytic reforming reaction of CH4 with steam on the surface of the sphere produced a small amount of H2, CO and CO2, at the same time there occur oxidizing reactions of CH4, H2 and CO in the space. Both experimental and calculated results show that a small quantity of H2 produced by catalytic reforming reaction can greatly reduce the ignition temperature. In traditional catalytic combustion precious metals is applied to catalyse oxidizing reaction between oxygen and fuel to reduce ignition temperature. In this paper, a study on a ‘indirect’ catalytic combustion is conducted. The cheap catalytic material of Ni with rare earth is used and reforming reaction between steam and fuel is catalyzed, so hydrogen is generated on the surface of hot sphere and utilized to improve combustion. Calculation indicates that the high reactivity and high diffusivity of H2 remarkably affect ignition.  相似文献   

8.
The catalytic properties of gadolinium-doped ceria (CGO) in methane steam reforming were studied. Catalytic tests were carried out between 750 and 900 °C, for H2O/CH4 ratios varying between 0.1 and 1, pretreated in H2O/N2, N2 and H2/N2. Above 800 °C, slight deactivation with time on stream was observed except for the H2-pretreated sample. Surface area measurements, O2 adsorption at room temperature and O2-temperature programmed oxidation experiments were performed after catalytic testing. Changes in both surface area and redox properties of CGO were observed and related to catalytic deactivation. Hydrogen is thought to play a key role in catalytic activity and deactivation process.  相似文献   

9.
The hydrodealkylation of 1,2,4‐trimethylbenzene (1,2,4‐TMB) to benzene, toluene and xylenes (BTX) was investigated on Ni‐Mg‐Al catalysts prepared by the coprecipitation method. The catalytic performances of these catalysts were considerably influenced by the Mg content of the catalyst. The catalysts were characterized via X‐ray diffraction, H2‐temperature‐programmed reduction, NH3‐temperature‐programmed desorption (TPD), CO2‐TPD, and Fourier transform infrared spectroscopy. The results demonstrated that the appropriate amount of Mg species significantly affected the structural properties and caused the Ni nanoparticles to become highly dispersed. The higher activity of the catalysts might be ascribed to the homogenous distribution of the Ni nanoparticles, and the synergetic effects between Ni0, NiAl2O4 and MgAl2O4 were the key factor for obtaining the BTX.  相似文献   

10.
Solid oxide fuel cells with Ni‐MnO/yttria‐stabilized‐zirconia (YSZ) tricomposite anode supports were fabricated with different MnO concentrations, and the coking tolerances and catalytic activities were investigated in wet CH4 atmosphere. Ni0.9(MnO)0.1/YSZ (10MnO) anode support cell exhibited a maximum power density of 210, 354, 505, and 620 mWcm−2 at 700, 750, 800, and 850 °C, respectively, in H2. Moreover, a maximum power density in wet CH4 reaches 504 mWcm−2 at 800 °C; while the Ni/YSZ cell showed poorer performances. The coking tolerance improved with an increase in their MnO content, and the 10MnO anode showed the highest tolerance. 10MnO exhibited stable performance for more than 40 h in wet CH4 without undergoing deactivation. Furthermore, it showed negligible coke formation of 0.0045 g of coke per catalyst, during testing under steam reforming‐like conditions at a steam‐to‐carbon (S/C) ratio of 1. Outlet gas chromatography analysis indicated that MnO suppresses CH4 cracking, while only minimally lowering the catalytic activity of steam reforming. Thus, it can be inferred that MnO promotes the adsorption of steam and oxygen on the reaction sites, owing to its high basicity and oxygen storage capacity. The increase in the local S/C and oxygen‐to‐carbon ratios suppresses CH4 cracking and promotes coke gasification.  相似文献   

11.
Steam reforming (SR) and oxidative steam reforming (OSR) of ethanol were investigated over undoped and Cu, Co and Ca doped Ni/CeO2–ZrO2 catalyst in the temperature range of 400–650 °C. The nickel loading was kept fixed at 30 wt.% and the loading of Cu and Co was varied from 2 to 10 wt% whereas the Ca loading was varied from 5 to 15 wt.%. The catalysts were characterized by various techniques, such as surface area, temperature programmed reduction, X-Ray diffraction and H2 chemisorption. For Cu and Co doped catalyst, CuO and Co3O4 phases were detected at high loading whereas for Ca doped catalyst, no separate phase of CaO was found. The reducibility and the metal support interactions were different for doped catalysts and varied with the amount and nature of dopants. The hydrogen uptake, nickel dispersion and nickel surface area was reduced with the metal loading and for the Co loaded catalysts the dispersion of Ni and nickel surface area was very low. For Cu and Ca doped catalysts, the activity was increased significantly and the main products were H2, CO, CH4 and CO2. However, the Co doped catalysts showed poor activity and a relatively large amount of C2H4, C2H6, CH3CHO and CH3COCH3 were obtained. For SR, the maximum enhancement in catalytic activity was obtained with in the order of NCu5. For Cu–Ni catalysts, CH3CHO decomposition and reforming reaction was faster than ethanol dehydrogenation reaction. Addition of Cu and Ca enhanced the water gas shift (WGS) and acetaldehyde reforming reactions, as a result the selectivity to CO2 and H2 were increased and the selectivity to CH3CHO was reduced significantly. The maximum hydrogen selectivity was obtained for Catalyst N (93.4%) at 650 °C whereas nearly the same selectivity to hydrogen (89%) was obtained for NCa10 catalyst at 550 °C. In OSR, the catalytic activity was in the order N > NCu5 > NCa15 > NCo5. In the presence of oxygen, oxidation of ethanol was appreciable together with ethanol dehydrogenation. For SR reaction, the highest hydrogen yield was obtained on the undoped catalyst at 600 °C. However, with calcium doping the hydrogen yields are higher than the undoped catalyst in the temperature range of 400–550 °C.  相似文献   

12.
Two model bio‐oil fractions were chosen as two different major classes of components present in bio‐oil. Steam reforming of the two fractions was carried out to investigate the gas product distributions and carbon deposition behavior. Higher H2 yield and carbon conversion to the gaseous phase can be obtained at relatively low temperature (650 °C) for steam reforming of the light fraction. For steam reforming of the heavy fraction, a higher temperature (800 °C) is necessary to obtain higher H2 yield and carbon conversion to the gaseous phase. At 800 °C, the heavy fraction requires a higher steam to carbon ratio (10) than that for the light fraction (7) to achieve efficient steam reforming. Based on the same carbon space velocity, for 10 h stream time, the drop of H2 yield and carbon conversion to the gaseous phase in the steam reforming of the heavy fraction is more rapid than that of the light fraction. Carbon deposition in the steam reforming of the heavy fraction is much more severe than that of the light fraction, as determined by carbon content analysis and SEM detection.  相似文献   

13.
Mesoporous nanocrystalline MgSiO3 with high surface area was synthesized by a hydrothermal method and employed as support in dry and steam reforming of methane. Ni/MgSiO3 catalysts were prepared by an impregnation method and characterized by different techniques. N2 adsorption analysis indicated that addition of nickel shifted the pore size distributions to smaller sizes. Temperature‐programmed reduction analysis revealed that a higher nickel loading enhanced the reducibility of the catalyst. The catalytic performance was improved with increasing the nickel content. The Ni/MgSiO3 catalyst exhibited high stability in dry reforming but methane conversion declined with time‐on‐stream in the steam reforming reaction. Temperature‐programmed oxidation profiles of spent catalysts indicated that the high amount of carbon deposited on the catalyst surface in dry and steam reforming was assigned to whisker‐type carbon.  相似文献   

14.
Methane dry reforming was studied over nanostructure bimetallic Ni‐Co‐MgO catalysts. The catalysts were prepared by coprecipitation with different Ni‐Co contents and characterized by XRD, BET, N2 adsorption/desorption, temperature‐programmed reduction (TPR), SEM, and temperature‐programmed oxidation (TPO) techniques. XRD results let conclude that all samples contained MgO crystallite phases. With a higher Ni content the intensity of the diffraction peaks became stronger, indicating growth of the crystallite size of the prepared solid solutions. BET analysis demonstrated that a higher Ni‐Co content decreased the surface area. The optimal catalyst could be determined which had the highest activity and a good stability in dry reforming reaction.  相似文献   

15.
M. Wang  Z. Fu  Z. Yang 《Fuel Cells》2014,14(2):251-258
Density functional theory (DFT) calculations are employed to investigate the key reactions in steam reforming of methane (SRM) on Ni‐based bimetallic surface alloys, including the dissociation of CH4 and H2O, the oxidation of CH by oxygen atom to form formyl (CHO), and the dehydrogenation of CHO to form carbon monoxide (CO). The aim of this investigation is to hunt for an optimal catalyst for SRM, which can inhibit carbon formation while maintaining high activity to the SRM. Coinage metal impurity (Au, Ag, and Cu) doped Ni catalysts have been proven to inhibit carbon deposition. In this work, we focus on investigating the doping effects on some leading processes in SRM. It is found that the coinage metal doping has a little effect on the two‐step dissociation of H2O, which has a linear correlation between the dissociation barriers and the OH–H coadsorption energies. In addition, the dehydrogenation of CHO is kinetically favorable on all alloy surfaces. However, for the CH oxidation to CHO, only the Ni–Cu surface remains high activity. These results suggest that Ni–Cu bimetallic material is an excellent active carbon‐tolerance SRM catalyst for solid‐oxide fuel cells.  相似文献   

16.
Hydrogen production by partial oxidation and steam reforming (POSR) of n‐octane was investigated over alumina‐supported Ni and Ni‐Pd catalysts. It showed that Ni‐Pd/Al2O3 had higher activity and hydrogen selectivity than the nickel catalyst under the experimental conditions, which indicated Ni‐Pd/Al2O3 could be an effective catalyst for the production of hydrogen from hydrocarbons.  相似文献   

17.
Supported nickel catalysts with core/shell structures of Ni/Al2O3 and Ni/MgO-Al2O3 were synthesized under multi-bubble sonoluminescence (MBSL) conditions and tested for dry reforming of methane (DRM) to produce hydrogen and carbon monoxide. A supported Ni catalyst made of 10% Ni loading on Al2O3 and MgO-Al2O3, which performed best in the steam reforming of methane (97% methane conversion at 750 °C) and in the partial oxidation of methane (96% methane conversion at 800 °C), showed also good performance in DRM and excellent thermal stability for the first 150 h. The supported Ni catalysts Ni/Al2O3 and Ni/MgO-Al2O3 yielded methane conversions of 92% and 92.5%, respectively and CO2 conversions of 95.0% and 91.8%, respectively, at a reaction temperature of 800 °C with a molar ratio of CH4/CO2 = 1. Those were near thermodynamic equilibrium values.  相似文献   

18.
A kinetic study of ethanol steam reforming to produce hydrogen within the region of kinetic rate control was carried out. A Ni(II)–Al(III) lamellar double hydroxide as catalyst precursor was used. H2, CO, CO2 and CH4 were obtained as products. Using the Langmuir–Hinshelwood (L–H) approach, two kinetic models were proposed. The first was a general model including four reactions, two of them corresponding to ethanol steam reforming and the other two to methane steam reforming. When high temperatures and/or high water/ethanol feed ratios were used, the system could be reduced to two irreversible ethanol steam reforming reactions.  相似文献   

19.
Pyrolytic lignin can be transformed to liquid transportation fuels by hydrotreatment, which requires hydrogen (H2). Bio‐oil is a suitable renewable feedstock for H2 production. Here, n‐butanol was chosen as a model compound representing alcohols in the bio‐oil aqueous fraction. H2 production from steam reforming of n‐butanol was investigated in a fixed‐bed reactor using a commercial Ni/hydrotalcite catalyst. A plausible reaction pathway in the presence of Ni was discussed. An increase in reforming temperature, space time, and steam/carbon ratio in the feed enhanced the n‐butanol conversion and H2 yield. Reaction kinetics was studied in the defined chemical control regime. The reaction order with respect to n‐butanol (one) and the activation energy were determined.  相似文献   

20.
This work investigates the improvement of Ni/Al2O3 catalyst stability by ZrO2 addition for H2 gas production from CH4/CO2 reforming reactions. The initial effect of Ni addition was followed by the effect of increasing operating temperature to 500–700 °C as well as the effect of ZrO2 loading and the promoted catalyst preparation methods by using a feed gas mixture at a CH4:CO2 ratio of 1:1.25. The experimental results showed that a high reaction temperature of 700 °C was favored by an endothermic dry reforming reaction. In this reaction the deactivation of Ni/Al2O3 was mainly due to coke deposition. This deactivation was evidently inhibited by ZrO2, as it enhances dissociation of CO2 forming oxygen intermediates near the contact between ZrO2 and nickel where the deposited coke is gasified afterwards. The texture of the catalyst or BET surface area was affected by the catalyst preparation method. The change of the catalyst texture resulted from the formation of ZrO2–Al2O3 composite and the plugging of Al2O3 pore by ZrO2. The 15% Ni/10% ZrO2/Al2O3 co-impregnated catalyst showed a higher BET surface area and catalytic activity than the sequentially impregnated catalyst whereas coke inhibition capability of the promoted catalysts prepared by either method was comparable. Further study on long-term catalyst stability should be made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号