首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pressure‐less spark plasma sintering (SPS) is a new approach during which rapid densification of ceramic nanopowder green bodies is accompanied by rapid grain growth. Although the origin of this phenomenon has not yet been fully understood significant, difference in grain growth between pressure‐less and pressure‐assisted SPS was expected. In this work 3Y‐TZP nanopowder with average particle size of 12 nm was consolidated using two‐step approach: (1) at an intermediate temperature (600°C to 1000°C) SPS warm pressing followed by (2) high temperature (1400°C to 1600°C) pressure‐less SPS. The standard one step pressure‐assisted SPS experiments were quoted as references. Rapid grain growth was observed during both pressure‐less and standard SPS. The samples prepared by both approaches at the same sintering temperature (1400°C–1600°C) achieved identical grain size and grain size distribution, if large pores were eliminated in early stage by SPS warm pressing. The electric current, electromagnetic field, and mechanical pressure is proven to have a negligible direct influence on grain growth in 3Y‐TZP ceramics at temperatures above 1000°C under standard SPS conditions.  相似文献   

2.
In this work, the spark plasma sintering (SPS) of commercial yttria nanopowder is investigated. The SPS parameters such as sintering temperature, applied pressure, and dwell time are varied. Densification without grain growth occurring at occurred up to a sintering temperature of 1400°C and grain growth without further densification taking place at the higher temperature. The optimum sample was obtained at a temperature of 1400°C with a pressure of 70 MPa and dwelling time of 15 minutes. The highest relative density of 99.8% and the average grain size of 1.26 μm were obtained at 1400°C. The yttria ceramic annealed at 1200°C had the in-line transmission of 5%-70% and 70%-82% in the visible and infrared wavelength region, respectively. The measurements of hardness and fracture toughness characteristics of the transparent yttria ceramic showed 9.2 GPa and 2.24 MPa.m1/2, respectively.  相似文献   

3.
Free-standing Li1.5Al0.5Ti1.5P3O12 electrolyte sheets with a thickness of 50–150 μm were prepared by tape casting followed by sintering at 850–1000 °C in air. While a sintering temperature of 850 °C was too low to achieve appreciable densification and grain growth, a peak relative density of 95% was obtained at 920 °C. At higher sintering temperatures, the microstructure changed from a bimodal grain size distribution towards exclusively large grains (> 10 μm), accompanied by a decrease in relative density (down to 86% at 1000 °C). In contrast, ionic conductivity increased with increasing sintering temperature, from 0.1 mS/cm at 920 °C to 0.3 mS/cm at 1000 °C. Sintering behavior was improved by adding 1.5% of amorphous silica to the slurry. In this way, almost full densification (99.8%) and an ionic conductivity of 0.2 mS/cm was achieved at 920 °C.Mechanical characterization was carried out on the almost fully densified material, yielding elastic modulus and hardness values of 109 and 8.7 GPa, respectively. The fracture strength and Weibull modulus were also characterized. The results confirm that densification and reduction of grain size improve the mechanical properties.  相似文献   

4.
A low cost macroporous support for ceramic membranes was prepared by in situ reaction sintering from local natural mineral kaolin with dolomite as sintering inhibitor. The characterization focused on the phase evolution, microstructure, pore structure, mechanical strength and water permeability at various compositions and sintering temperatures. The sintering of kaolin was improved with 5 wt% dolomite, but clearly inhibited with ≥10 wt% dolomite. For the 20 wt% dolomite samples, the crystalline phases were mainly composed of mullite, cordierite and anorthite after sintering between 1,150 and 1,300 °C. Moreover, both mean pore size and mechanical strength increased with increasing sintering temperature from 1,100 to 1,300 °C, but the water permeability and porosity decreased. The 1,250 °C sintered macroporous support with 20 wt% dolomite exhibited good performances such as porosity 44.6%, mean pore size 4.7 μm, bending strength 47.6 MPa, water permeability 10.76 m3 m−2 h−1 bar−1, as well as good chemical resistance. This work provides opportunities to develop cost-effective ceramic supports with controllable pore size, porosity, and high strength for high performance membranes.  相似文献   

5.
《Ceramics International》2022,48(15):21756-21762
Understanding the densification and grain growth processes is essential for preparing dense alumina fibers with nanograins. In this study, the alumina fibers were prepared via isothermal sintering at 1200, 1300, 1400, and 1500 °C for 1–30 min. The phase, microstructure, and density of the sintered fibers were investigated using XRD, SEM, and Archimedes methods. It was found that the phase transformation during the isothermal sintering enhances the densification of Al2O3 fibers in the initial stage, while the pores generated during the phase transformation retard the densification in the later period. The kinetics and mechanisms for the densification and grain growth of the fibers were discussed based on the sintering and grain growth models. It was revealed that the densification process of the fibers sintered at 1500 °C is dominated by the lattice diffusion mechanism, while the samples sintered at 1200–1400 °C are dominated by the grain boundary diffusion mechanism. The grain growth of the Al2O3 fibers sintered at 1200–1300 °C is governed by surface-diffusion-controlled pore drag, and that sintered at 1400 °C is dominated by lattice-diffusion-controlled pore drag.  相似文献   

6.
For the first time we have demonstrated the densification of high‐purity nanostructured (davg ≈ 60 nm) tungsten carbide by High Pressure Spark Plasma Sintering (HPSPS) in the unusually low temperature range of 1200°C–1400°C. The high‐pressure sintering (i.e., 300 MPa) produced dense material at a temperature as low as 1400°C. In comparison with more conventional sintering techniques, such as SPS (80 MPa) or hot isostatic pressing, HPSPS lowered the temperature required for full densification by 400°C–500°C. High Pressure Spark Plasma Sintering, even in absence of any sintering aid or grain growth inhibitor, retained a very fine microstructure resulting in a significant improvement in both hardness (2721 HV10) and fracture toughness (7.2 MPa m1/2).  相似文献   

7.
In this research, the comparison between microwave sintering and conventional sintering on the mechanical properties and microstructural evolution of 3?mol% yttria-stabilised zirconia were studied. Green bodies were compacted and sintered at various temperatures ranging from 1200?°C to 1500?°C. The results showed that microwave assisted sintering was beneficial in enhancing the densification and mechanical properties of zirconia, particularly when sintered at 1200?°C. It was revealed that as the sintering temperature was increased to 1400?°C and beyond, the grain size and mechanical properties for both microwave- and conventional-sintered ceramics were comparable thus suggesting that the sintering temperature where densification mechanism was activated, grain size was strongly influenced by the sintering temperature and not the sintering mode.  相似文献   

8.
In the present work, the sintering behaviour of HA particles prepared via the wet precipitation method (HAp) and wet mechanochemical technique (HAwm) was investigated. The sintering behaviour of a commercial HA powder (HAc) was also studied for comparison purpose. All the three powders were characterised in terms of particle size, Ca/P ratio and crystal size. Green samples were prepared and sintered in air at temperatures ranging from 1000 °C to 1400 °C. The sintered bodies were studied in terms of the phase stability, relative density, Young's modulus, Vickers hardness, fracture toughness and grain size. The results indicated that HAwm samples suffered phase decomposition while the HAp and HAc sintered samples showed no phase disruption throughout the temperature range employed. The HAp samples exhibited the overall best densification and properties when compared to the HAc and HAwm samples. Furthermore, the results showed that mechanical properties of sintered samples were governed by both the bulk density and the grain size.  相似文献   

9.
The sintering behavior of commercially available MgAl2O4 spinel was investigated under DC electric field in a range of 0 and 1000 V/cm. Flash‐sintering results in densification close to theoretical density at 1410°C under the DC field of 1000 V/cm, in comparison to the higher sintering temperature of 1650°C in case of conventional sintering. It was observed that the fields less than 750 V/cm had no significant effect on the densification behavior. An abrupt increase in power dissipation was observed corresponding to the occurrence of the flash event. A significant enhancement in grain size was observed in case of flash‐sintered dense spinel samples. The gradual increase in the specimen conductivity observed in the electric field‐assisted sintering (FAST) regime led to Joule heating within the specimen. The increased specimen temperature triggered further increment of current and Joule heating, resulting in the immediate densification.  相似文献   

10.
《Ceramics International》2020,46(7):8689-8694
In this article, we report the effects of slurry formulation and sintering conditions on the microstructure and permeability of porous titania sheets prepared by tape casting. It was found that solid concentration and binder content in the titania slurry play a vital role in the porosity and microstructure of the sintered titania sheets. Solid concentration and binder content were optimized based on the green tape quality and open porosity of the sintered titania sheets. The optimum solid concentration with the lowest surface roughness was obtained at 0.61 g/cm3. The effects of temperature and sintering time on the open porosity and crystal structure of the final product were also investigated. Increasing the sintering temperature from 1000 to 1100 °C resulted in increasing the pore size from 170 to 264 nm and decreasing the open porosity. Finally, water permeability of the porous titania sheets was studied to evaluate the permeation flux and maximum operating pressure. The results revealed that the permeability of the porous titania sheet is increased not only by increasing the open porosity but also by increasing the pore size.  相似文献   

11.
We report the fabrication, densification and characterization of polycrystalline free-standing yttrium iron garnet Y3Fe5O12 (YIG) thick films in this paper. The thick films were fabricated using a double doctor blade technique from co-precipitated nanocrystalline YIG powders. The sintering temperature of YIG thick films was varied from 1000 to 1400°C. A volume diffusion mechanism is seen to govern the densification process. A high relative density of ~99% could be achieved in a YIG thick film, with a thickness of 80?µm, sintered at a relatively low temperature of 1300?°C. The magnetization value ~1750?Oe, near to the YIG bulk magnetization value and an acceptable low ferromagnetic resonance (FMR) linewidth (?H) of 80?Oe resulted in these high density YIG thick films with microwave device possibilities.  相似文献   

12.
《Ceramics International》2020,46(10):16096-16103
In this study, porous zirconia membranes were developed by aqueous tape casting. The influence of poly (methyl methacrylate) (PMMA) as a pore former, and sintering temperatures (1300, 1400, and 1500 °C) on open porosity and pore size was investigated. The rheological behaviour of the suspensions was measured. The slurries showed pseudoplastic behavior, which is desirable for tape casting. Functionalization with an amino silane precursor (3-aminopropyl triethoxysilane, APTES) was carried out to increase the hydrophilic properties of the membranes. The functionalized samples were characterized by SEM-EDX to identify the moieties attached to the surface. Membranes with open porosity ranging from 27% to 51% and average pore sizes from 0.2 to 1.4 μm were obtained. Samples sintered at 1400 °C with added pore former yielded the highest water flux, 257 Lm−2h−1, which increased to 642 Lm−2h−1 after functionalization. Membranes with tailored porosity and pore size obtained in this study are indicated for applications involving separation processes, especially for microfiltration systems.  相似文献   

13.
《Ceramics International》2015,41(6):7374-7380
Porous magnesium aluminate spinel (MgAl2O4) ceramic supports were fabricated by reactive sintering from low-cost bauxite and magnesite at different temperatures ranging from 1100 to 1400 °C and their sintering behavior and phase evolution were evaluated. The effects of sintering temperature on the pore structure, size and distribution as well as on the main properties of spinel ceramic supports such as flexural strength, nitrogen permeation flux and chemical resistance were investigated. The supports prepared at 1300 °C showed a homogeneous pore structure with the average pore size of 4.42 μm, and exhibited high flexural strength (35.6 MPa), high gas permeability (with nitrogen gas flux of 3057 m3 m−2 h−1 under a trans-membrane pressure of 0.1 MPa) and excellent chemical resistance.  相似文献   

14.
In this study, we investigated the effect of sintering temperature and nano boehmite additions on the phase composition, densification, and mechanical properties of porous cordierite ceramics. Ceramic samples were sintered at temperatures ranging from 1200 to 1400°C. Carbon powder was used as a pore forming agent to improve the porosity of the ceramic structure. Nano boehmite and carbon additions significantly enhanced ceramic porosity and average pore size in sintered samples. The bulk density and apparent porosity of the sintered samples were found to be 0.96–1.53 g/cm3 and 42.3%–65.6%, respectively. Sintered samples had cold crushing strengths of 1.5–14.3 MPa. The microstructure obtained by scanning electron microscopy was used to measure average pore size in sintered samples and was found to be 41.93 µm for stoichiometric composition (SC), 67.72 µm for SC and nano boehmite, and 102.98 µm for SC, nano boehmite, and carbon. The microstructure of the sintered samples revealed that the crystallinity of the in situ formed phases increased with the increase in nano boehmite additions.  相似文献   

15.
The application of a two-step sintering route successfully decreased the sintering temperature of Al-doped ZnO transparent conducting oxide target. The two-step sintering consisted of initial heat treatment (IHT) at 800–1000 °C under mild (<2 MPa) external pressure, and pressureless final sintering at 1250–1350 °C in a separate furnace. The optimum IHTs for effective densification depended on the Al doping. The 800 °C IHT was effective for 1 wt.% Al doping, and the 1000 °C IHT, for 3 wt.% Al doping. As a result of the effective IHT, the volume of the micron sized pore decreased with the fragmentation into submicron pores. This suggests that cohesion of the secondary particles occurred during the effective IHT. The IHT temperature for achieving cohesion increased in the 3 wt.% Al doping. The criterion for determining the IHT in the two-step sintering was identified as the minimum temperature at which the cohesion of secondary particles can be achieved.  相似文献   

16.
Composites consisting of 70 vol% ZrB2 and 30 vol% α‐SiC particles were hot pressed to near full density and subsequently annealed at temperatures ranging from 1000°C to 2000°C. Strength, elastic modulus, and hardness were measured for as‐processed and annealed composites. Raman spectroscopy was employed to measure the thermal residual stresses within the silicon carbide (SiC) phase of the composites. Elastic modulus and hardness were unaffected by annealing conditions. Strength was not affected by annealing at 1400°C or above; however, strength increased for samples annealed below 1400°C. Annealing under uniaxial pressure was found to be more effective than annealing without applied pressure. The average strength of materials annealed at 1400°C or above was ~700 MPa, whereas that of materials annealed at 1000°C, under a 100 MPa applied pressure, averaged ~910 MPa. Raman stress measurements revealed that the distribution of stresses in the composites was altered for samples annealed below 1400°C resulting in increased strength.  相似文献   

17.
《Ceramics International》2015,41(7):8282-8287
The natural mineral kaolin combined with alumina additives Al(OH)3,α-Al2O3 and AlF3 was used to prepare porous mullite ceramic membrane supports using an in-situ reaction. The effects of composition and sintering temperature on the sintering behavior, pore structure, permeability and microstructure of the resulting porous mullite supports were extensively investigated. The experimental results showed that excess SiO2 in kaolin can be consumed by adding alumina precursors, which resulted in a stiff skeleton of interlinked needle-like mullite crystals in-situ during the sintering. The needle-like mullite crystals touched each other and formed a short network, which acted as a porous skeletal network structure. This network resulted in a highly permeable porous structure. The resulting support is suitable for the preparation of asymmetric ceramic membranes. The densification and pore structure of the support can be effectively adjusted by control of the quantity of alumina precursors in the composition and the sintering temperature. Sintering the subject mullite compositions at 1500 °C for two hours resulted in support structures with an average porosity of 45.9%, an average pore size of 1.3 µm and a penetrating porosity of 35.9%.  相似文献   

18.
In this study, calcium lanthanum sulfide (CaLa2S4, CLS) ceramics with the cubic thorium phosphate structure were sintered at different temperatures by field‐assisted sintering technique (FAST). Densification behavior and grain growth kinetics were studied through densification curves and microstructural characterizations. It was determined that the densification in the 850°C‐950°C temperature range was controlled by a mixture of lattice or grain‐boundary diffusion, and grain‐boundary sliding. It was revealed that grain‐boundary diffusion was the main mechanism controlling the grain growth between 950°C and 1100°C. The infrared (IR) transmittance of the FAST‐sintered CLS ceramics was measured and observed to reach a maximum of 48.1% at 9.2 μm in ceramic sintered at 1000°C. In addition, it was observed that the hardness of the CLS ceramics first increased with increasing temperature due to densification, and then decreased due to a decrease in dislocations associated with grain growth.  相似文献   

19.
《Ceramics International》2021,47(22):31187-31193
In this study, porous calcium silicate (CS) ceramics with oriented arrangement of lamellar macropore structure were prepared by directional freeze casting method. The lamellar macropores were connected by the micropores on the pore wall, which had good pore interconnectivity. The effects of solid loading of the slurry, freezing temperature, sintering additive content, and sintering temperature on the microstructures and compressive strength of the synthesized porous materials were investigated systematically. The results showed that with the increase of solid loading (≤20 vol%) and sintering additive content, the sizes of lamellar pores and pore walls increased gradually, the open porosity decreased and the compressive strength increased. The sintering temperature had little effect on the pore size of the ceramics, but increasing the sintering temperature (≤1050 °C) promoted the densification of the pore wall, reduced the porosity, and improved the strength. The decrease of freezing temperature had little effect on porosity, but it reduced the size of lamellar pore and pore wall, so as to improve the strength. Finally, porous CS ceramics with lamellar macropores of about 300–600 μm and 2–10 μm micropores on the pore wall were obtained. The porous CS ceramics had high pore interconnectivity, an open porosity of 66.25% and a compressive strength of 5.47 MPa, which was expected to be used in bone tissue engineering.  相似文献   

20.
《Ceramics International》2017,43(18):16722-16726
The physical properties and microstructure of porous purging plug materials added with different nano-alumina contents and firing temperatures were investigated by means of X-ray diffraction, scanning electron microscopy, air permeability, pore size distribution, mean pore size, apparent porosity, bulk density, and cold crushing strength (CCS) tests. The results showed that the addition of nano-alumina had a great effect on the physical properties and microstructure of the porous purging plug materials. With increasing nano-alumina content in the composition, the main phase was α-Al2O3 in all compositions and the mean pore size, apparent porosity and air permeability all increased due to the increased number of pores and pore size of the specimens which facilitated the formation of interconnected pores. When the sintering temperature was changed from 1550 °C to 1650 °C, some of the smaller pores vanished due to solid phase sintering, which reduced the apparent porosity, and some open pores connected to form interconnected pores, which promoted increased air permeability. In addition, the strength and porosity were found to follow the relationship σ = σ0 exp (-b P). When the apparent porosity increased, the CCS decreased, and vice versa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号