首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a novel receiver design from signal processing viewpoint for direct-sequence code-division multiple access (DS-CDMA) systems under multipath fading channels. A robust adaptive decision-feedback equalizer (DFE) is developed by using optimal filtering technique via minimizing the mean-square error (MSE). The multipath fading channels are modeled as tapped-delay-line filters, and the tap coefficients are described as Rayleigh distributions in order to imitate the frequency-selective fading channel. Then, a robust Kalman filtering algorithm is used to estimate the channel responses for the adaptation of the proposed DFE receiver under the situation of partially known channel statistics. The feedforward and feedback filters are designed by using not only the estimated channel responses but the uncertainties and error covariance of channel estimation as well. As shown in the computer simulations, the proposed adaptive DFE receiver is robust against the estimation errors and modeling dynamics of the channels. Hence, it is very suitable for receiver design in data transmissions through multipath fading channels encountered in most wireless communication systems  相似文献   

2.
Orthogonal space-time block codes (OSTBCs) yield full diversity gain even while requiring only a linear receiver. Such full-rate (rate-one) orthogonal designs are available for complex symbol constellations only for N=2 transmit antennas. In this paper, we propose a new family of full-rate space-time block codes (STBCs) using a single parameter feedback for communication over Rayleigh fading channels for N=3,4 transmit antennas and M receive antennas. The proposed rate-one codes achieve full diversity, and the performance is similar to maximum receiver ratio combining. The decoding complexity of these codes are only linear even while performing maximum-likelihood decoding. The partial channel information is a real phase parameter that is a function of all the channel gains, and has a simple closed-form expression for N=3,4. This feedback information enables us to derive (channel) orthogonal designs starting from quasi-orthogonal STBCs. The feedback complexity is significantly lower than conventional closed-loop transmit beamforming. We compare the proposed codes with the open-loop OSTBCs and also with the closed-loop equal gain transmission (EGT) scheme which uses equal power loading on all antennas. Simulated error-rate performances indicate that the proposed channel orthogonalized STBCs significantly outperform the open-loop orthogonal designs, for the same spectral efficiency. Moreover, even with significantly lower feedback and computational complexity, the proposed scheme outperforms the EGT technique for M>N.  相似文献   

3.
Bit-interleaved coded differential space-time modulation for transmission over spatially correlated Ricean flat fading channels is discussed. For improved noncoherent detection without channel state information at the receiver, iterative decoding employing hard-decision feedback and prediction-based metric computation is applied. The performance is assessed based on the associated cutoff rate, analytical expressions for the bit error rate and the outage probability, respectively and simulations. It is shown that the proposed scheme offers high power efficiency exploiting both space and time diversity, while the computational complexity is kept at a relatively low level.  相似文献   

4.
该文针对WCDMA标准中采用的闭环分集技术,给出了RAKE接收算法模型及反馈的加权矢量算法,进而分析了时变衰落信道中存在反馈链路延迟时闭环发送分集的接收性能,并与开环分集技术的接收性能进行了比较,指出了开环和闭环发送分集技术适用的不同移动环境.理论推导及仿真结果表明闭环发送分集在低速移动和较低路径信噪比环境下具有优于开环分集的接收性能.  相似文献   

5.
A transmit–receive diversity system in correlated Rayleigh fading in which the receiver estimates the channel through pilot symbols, and feeds this information back to the transmitter through a feedback path, is considered. The imperfect channel state information (CSI) is used by the transmitter to obtain the transmit weight vector for data transmission. The optimum receiver in the maximum-likelihood (ML) sense obtained from the conditional distribution of the received signal vector, conditioned on the imperfect CSI and the transmit weight vector, is derived for the system. For the case of $M$-ary phase-shift keying (MPSK), an analytical expression for the conditional symbol error probability (SEP), conditioned on the channel estimate and the transmit weight vector, is obtained, with the transmit weight vector chosen to minimize this conditional SEP. For the receive-only and transmit-only correlation scenarios with ill-conditioned eigenvalues of the receive and transmit covariance matrices (that is, some of the eigenvalues are very small), we derive expressions for the diversity gain. Numerical results are presented to compare the performance of our receiver with that of a conventional receiver in case of exponentially correlated fading. These results show that the optimum receiver typically has about a 0.5-dB gain over a conventional receiver when the correlation coefficient exceeds 0.5 and the number of receive antennas is much larger than the number of transmit antennas.   相似文献   

6.
We propose a reduced complexity antenna diversity combiner-equalizer receiver structure to combat multipath fading in cellular mobile radio (CMR) communications. The technique utilizes block adaptation based on interpolated channel estimates and linear or decision feedback equalization. The receiver offers complexity reduction relative to previously proposed block adaptation methods without sacrificing performance  相似文献   

7.
在基于信道信息有限反馈的无线多入单出系统中,发射机可采用简单的波束成形技术实现发射分集增益和阵列增益。已有的相关研究大多包含块衰落信道、准确信道估计或无反馈延迟等理想假设。该文建立了更为实际的Jakes时变信道中存在信道估计误差和反馈延迟的系统模型,分析了方形和矩形正交幅度调制星座图的平均误码率。研究表明:误码率的理论分析和仿真结果完全相符;增加反馈比特数可提高阵列增益,但不能增加分集增益;在慢变信道中,波束成形要显著优于正交空时分组码;误码率受信道估计误差和反馈延迟影响,且对后者尤为敏感。  相似文献   

8.
Delay diversity is an effective transmit diversity technique to combat adverse effects of fading. Thus far, previous work in delay diversity assumed that perfect estimates of current channel fading conditions are available at the receiver and training symbols are required to estimate the channel from the transmitter to the receiver. However, increasing the number of the antennas increases the required training interval and reduces the available time with in whichdata may be transmitted. Learning the channel coefficients becomes increasingly difficult for the frequency selective channels. In this paper, with the subspace method and the delay character of delay diversity, a channel estimation method is proposed, which does not use training symbols. It addresses the transmit diversity for a frequency selective channel from a single carrier perspective in the form of a simple equivalent flat fading model. Monte Carlo simulations give the performance of channel estimation and the performance comparison of our channel-estimation-based detector with decision feedback equalization, which uses the perfect channel information.  相似文献   

9.
将自适应比特功率分配技术与空间分集技术结合起来,提出了一种与空时编码结合的固定速率自适应正交频分复用(OFDM)方案。该算法在保证给定的误比特率和信息速率的情况下,使总发送功率最小化。仿真结果表明,该算法在相同误比特率的情况下比不采用自适应技术的MIMO-OFDM系统节省了发送功率。  相似文献   

10.
This paper proposes two new types of maximum a posteriori probability (MAP) receivers for multiple-input-multiple-output and orthogonal frequency-division multiplexing mobile communications with a channel coding such as the low-density parity-check code. One proposed receiver employs the expectation-maximization algorithm so as to improve performance of approximated MAP detection. Differently from a conventional receiver employing the minimum mean-square estimation (MMSE) algorithm, it applies the recursive least squares (RLS) algorithm to the channel estimation in order to track a fast fading channel. For the purpose of further improvement, the other proposed receiver applies a new adaptive algorithm that can be derived from the message passing on factor graphs. The algorithm exploits all detected signals but one of targeted time, and can gain a considerable advantage over the MMSE and RLS. Computer simulations show that the first proposed receiver is superior in channel-tracking ability to the conventional receiver employing the MMSE. Furthermore, it is demonstrated that the second proposed receiver remarkably outperforms both the conventional and the first proposed ones.  相似文献   

11.
In this paper, we investigate a multiple-input-multiple-output (MIMO) scheme combining transmit antenna selection and receiver maximal-ratio combining (the TAS/MRC scheme). In this scheme, a single transmit antenna, which maximizes the total received signal power at the receiver, is selected for uncoded transmission. The closed-form outage probability of the system with transmit antenna selection is presented. The bit error rate (BER) of the TAS/MRC scheme is derived for binary phase-shift keying (BPSK) in flat Rayleigh fading channels. The BER analysis demonstrates that the TAS/MRC scheme can achieve a full diversity order at high signal-to-noise ratios (SNRs), as if all the transmit antennas were used. The average SNR gain of the TAS/MRC is quantified and compared with those of uncoded receiver MRC and space-time block codes (STBCs). The analytical results are verified by simulation. It is shown that the TAS/MRC scheme outperforms some more complex space-time codes of the same spectral efficiency. The cost of the improved performance is a low-rate feedback channel. We also show that channel estimation errors based on pilot symbols have no impact on the diversity order over quasi-static fading channels.  相似文献   

12.
Transmit beamforming has been widely adopted for wireless systems with multiple transmit antennas. For a block fading channel, the Grassmannian beamformer has been shown to provide very good performance for finite rate feedback. However, the original Grassmannian beamformer does not take the time domain correlation of the channel fading into consideration. In this paper, based on a first-order autoregressive (AR1) dynamic fading model, we develop two new classes of beamforming algorithms that exploit the interframe correlations in the channel fading. We first introduce an algorithm based on a standard predictive vector quantization (PVQ) approach, and the resulting PVQ beamformer accomplishes superior power delivery at the receiver. However, the error performance of the PVQ beamformer is not satisfactory at high signal-to-noise ratios, and it also has a high implementation complexity. To resolve these issues, we then develop a novel successive beamforming (SBF) algorithm. The new SBF scheme uses the knowledge of the previous fading blocks to aid the beamforming codebook design of the current fading block. The beamforming codebook is constructed based on the successive partition of the surface of a spherical cap. The new SBF scheme accomplishes nearly the same performance as that of the PVQ beamformer, and it has a much simpler implementation. Through numerical simulations, we demonstrate that the proposed beamformers outperform the other previously proposed beamformers at various fading scenarios  相似文献   

13.
In a multicarrier direct-sequence code-division multiple access (MC DS CDMA) system, different fading channels for different users and/or different carriers are correlated in general; thus a vector channel model is more appropriate than disjoint scalar channel models. For multiuser MC DS CDMA systems, we propose (1) a generalized vector autoregressive model which accounts for correlation between different user/carrier fading channels, (2) the use of a two-phased algorithm to obtain the proposed model’s parameters, and (3) a receiver structure that consists of a generalized decorrelator followed by maximal-ratio combining (MRC) of uncorrelated carrier channel outputs of each user. The estimated fading coefficients provide the necessary quantities to MRC. The computer simulation results show that the proposed scheme has performance close to the case in which the channel is perfectly known, and outperforms separate scalar channel estimation case.  相似文献   

14.
We consider the optimum design of pilot-symbolassisted modulation (PSAM) schemes with feedback. The received signal is periodically fed back to the transmitter through a noiseless delayed link and the time-varying channel is modeled as a Gauss-Markov process. We optimize a lower bound on the channel capacity which incorporates the PSAM parameters and Kalman-based channel estimation and prediction. The parameters available for the capacity optimization are the data power adaptation strategy, pilot spacing and pilot power ratio, subject to an average power constraint. Compared to the optimized open-loop PSAM (i.e., the case where no feedback is provided from the receiver), our results show that even in the presence of feedback delay, the optimized power adaptation provides higher information rates at low signal-to-noise ratios (SNR) in mediumrate fading channels. However, in fast fading channels, even the presence of modest feedback delay dissipates the advantages of power adaptation.  相似文献   

15.
This paper presents power-efficient transmission schemes for the multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) block-fading channel under the assumption that the channel during each fading block is known perfectly at the receiver, but is unavailable at the transmitter. Based on the well-known vertical Bell Labs layered space-time (V-BLAST) architecture that employs independent encoding for each transmit antenna and successive decoding at the receiver, this paper presents a per-antenna-based power and rate feedback scheme, termed the "closed-loop" V- BLAST, for which the receiver jointly optimizes the power and rate assignments for all transmit antennas, and then returns them to the transmitter via a low-rate feedback channel. The power and rate optimization minimizes the total transmit power for support of an aggregate transmission rate during each fading block. Convex optimization techniques are used to design efficient algorithms for optimal power and rate allocation. The proposed algorithms are also modified to incorporate practical system constraints on feedback complexity and on modulation and coding. Furthermore, this paper shows that the per-antenna-based power and rate control can be readily modified to combine with the conventional linear MIMO transmit preceding technique as an efficient and capacity-approaching partial-channel-feedback scheme. Simulation results show that the closed-loop V-BLAST is able to approach closely the MIMO-OFDM channel capacity assuming availability of perfect channel knowledge at both the transmitter and the receiver.  相似文献   

16.
This paper proposes a novel solution to the problem of beamforming and power control in the downlink of a multiple-input multiple-output (MIMO) orthogonal frequency-division multiplexing (OFDM) system. This solution is developed in two steps. First, we describe an adaptive beamforming technique that, using a stochastic gradient method, maximizes the power delivered to a mobile terminal. In the proposed solution, perturbed precoding matrices are time multiplexed in the information signal transmitted to a mobile terminal; then, the mobile terminal informs the transmitter, via a single feedback bit, about the perturbation delivering the larger power. This approach does not need pilot symbols and uses quasi–Monte Carlo methods to generate the required perturbations with the relevant advantages of improving the downlink spectral efficiency and reducing the system complexity with respect to other competing solutions. Then, we propose a novel power-control algorithm that, selecting a proper transmission energy level from a set of possible values, aims to minimize the average bit error rate. This set of levels is generated on the basis of the channel statistics and a long-term constraint on the average transmission power. Numerical results evidence the robustness of the proposed algorithms in a dynamic fading environment.   相似文献   

17.
Reception of asynchronous, multicarrier direct-sequence-code division multiple access (DS-CDMA) in time-varying, multipath radio channels with use of a receiving antenna array is investigated. Interference reducing minimum mean squared error (MMSE) receivers are discussed, and by considering the time-variation of the channel, a modified structure is derived which is efficient for channels experiencing small-scale fading. A blind implementation of this receiver is then proposed. Subspace concepts are applied to formulate a tracking, composite channel vector estimator which operates effectively in fading situations, even when high levels of interference are present. Both the modified MMSE weight matrix and diversity combining weights are generated from these channel estimates. Simulations of the proposed receiver show it to have superior performance over a standard MMSE receiver which is periodically re-evaluated to permit it to follow the channel variations due to small-scale fading. Furthermore, a hybrid MMSE receiver is proposed which applies different processing methods depending on each transmitters mobility, resulting in improved performance.  相似文献   

18.
Multiple-input multiple-output (MIMO) wireless systems can achieve significant diversity and array gain by using transmit beamforming and receive combining techniques. In the absence of full channel knowledge at the transmitter, the transmit beamforming vector can be quantized at the receiver and sent to the transmitter using a low-rate feedback channel. In the literature, quantization algorithms for the beamforming vector are designed and optimized for a particular channel distribution, commonly the uncorrelated Rayleigh distribution. When the channel is not uncorrelated Rayleigh, however, these quantization strategies result in a degradation of the receive signal-to-noise ratio (SNR). In this paper, switched codebook quantization is proposed where the codebook is dynamically chosen based on the channel distribution. The codebook adaptation enables the quantization to exploit the spatial and temporal correlation inherent in the channel. The convergence properties of the codebook selection algorithm are studied assuming a block-stationary model for the channel. In the case of a nonstationary channel, it is shown using simulations that the selected codebook tracks the distribution of the channel resulting in improvements in SNR. Simulation results show that in the case of correlated channels, the SNR performance of the link can be significantly improved by adaptation, compared with nonadaptive quantization strategies designed for uncorrelated Rayleigh-fading channels  相似文献   

19.
OFDM power loading using limited feedback   总被引:1,自引:0,他引:1  
Orthogonal frequency division multiplexing (OFDM) is a practical broadband signaling technique for use in multipath fading channels. Over the past ten years, research has shown that power loading, where the power allocations on the OFDM frequency tones are jointly optimized, can improve error rate or capacity performance. The implementation of power loading, however, is dependent on the presence of complete forward link channel knowledge at the transmitter. In systems using frequency division duplexing (FDD), this assumption is unrealistic. In this paper, we propose power loading for OFDM symbols using a limited number of feedback bits sent from the receiver to the transmitter. The power loading vector is designed at the receiver, which is assumed to have perfect knowledge of the forward link channel, and conveyed back to the transmitter over a limited rate feedback channel. To allow for the vector to be represented by a small number of bits, the power loading vector is restricted to lie in a finite set, or codebook, of power loading vectors. This codebook is designed offline and known a priori to both the transmitter and receiver. We present two power allocation selection algorithms that optimize the probability of symbol error and capacity, respectively. Simulation results show that the proposed limited feedback techniques provide performance close to full channel knowledge power loading.  相似文献   

20.
The study of channel capacity evaluation in conjunction with maximal ratio diversity-combining (MRC) is presented in this paper. Analysis of the capacity in correlative Nakagami-m fading channels is observed. Using the proposed fading model, the power and rate adaptation, constant transmit power, channel inversion with fixed rate and truncated channel inversion adaptation policies are analyzed. Our results show that the power and rate adaptation policy, being only slightly higher than capacity of constant transmit power policy, provides the highest capacity over the other adaptation policies. The results also show that truncated channel inversion adaptation policy is better alternative compared to complete channel inversion policy for all values of fading severity, diversity order and correlation coefficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号