首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wireless sensor networks (WSNs) are being used in a wide variety of critical applications such as military and health‐care applications. Such networks, which are composed of sensor nodes with limited memory capacity, limited processing capabilities, and most importantly limited energy supply, require routing protocols that take into consideration these constraints. The aim of this paper is to provide an efficient power aware routing algorithm for WSNs that guarantees QOS and at the same time minimizes energy consumption by calculating the remaining battery capacity of nodes and taking advantage of the battery recovery process. We present an online‐battery aware geographic routing algorithm. To show the effectiveness of our approach, we simulated our algorithm in ns2 and compared it with greedy perimeter stateless routing for wireless networks and battery‐aware routing for streaming data transmissions in WSNs. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
In military action, marching is a common method used for supply‐troop movement. Supply routes are typically in the wilderness where the route conditions change over time. This paper proposes a power‐saving algorithm allowing supply troops to collect route information using wireless sensor network technology. Each member in the marching supply troop is equipped with a battery‐powered sensor. To save power consumption, the proposed methods schedule the sleeping period for each member according to the size of the marching supply troop and its moving velocity. Two data carrying methods are proposed to reduce the frequency of long‐distance data uploading. The first method allows the uploaded data to be carried within a single‐round data collection period, and the second method extends the data carrying period to multiple rounds. The simulation results show that scheduling a sleep period can prolong the sensing distance along the route. These two proposed methods can add an additional 18–70% in distance data over methods without scheduling a sleep period. The energy spent on long‐distance data transmissions can be improved by 7–25%. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Wireless sensor networks are characterized by multihop wireless lossy links and resource constrained nodes. Energy efficiency is a major concern in such networks. In this paper, we study Geographic Routing with Environmental Energy Supply (GREES) and propose two protocols, GREES-L and GREES-M, which combine geographic routing and energy efficient routing techniques and take into account the realistic lossy wireless channel condition and the renewal capability of environmental energy supply when making routing decisions. Simulation results show that GREESs are more energy efficient than the corresponding residual energy based protocols and geographic routing protocols without energy awareness. GREESs can maintain higher mean residual energy on nodes, and achieve better load balancing in terms of having smaller standard deviation of residual energy on nodes. Both GREES-L and GREES-M exhibit graceful degradation on end-to-end delay, but do not compromise the end-to-end throughput performance. Kai Zeng received his B.E. degree in Communication Engineering and M.E. degree in Communication and Information System both from Huazhong University of Science and Technology, China, in 2001 and 2004, respectively. He is currently a Ph.D. student in the Electrical and Computer Engineering department at Worcester Polytechnic Institute. His research interests are in the areas of wireless ad hoc and sensor networks with emphases on energy-efficient protocol, cross-layer design, routing, and network security. Kui Ren received his B. Eng. and M. Eng. both from Zhejiang University, China, in 1998 and 2001, respectively. He worked as a research assistant at Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences from March 2001 to January 2003, at Institute for Infocomm Research, Singapore from January 2003 to August 2003, and at Information and Communications University, South Korea from September 2003 to June 2004. Currently he is a PhD candidate in the ECE department at Worcester Polytechnic Institute. His research interests include ad hoc/sensor network security, wireless mesh network security, Internet security, and security and privacy in ubiquitous computing environments. Wenjing Lou is an assistant professor in the Electrical and Computer Engineering department at Worcester Polytechnic Institute. She obtained her Ph.D. degree in Electrical and Computer Engineering from University of Florida in 2003. She received the M.A.Sc. degree from Nanyang Technological University, Singapore, in 1998, the M.E. degree and the B.E. degree in Computer Science and Engineering from Xi’an Jiaotong University, China, in 1996 and 1993 respectively. From December 1997 to July 1999, she worked as a Research Engineer in Network Technology Research Center, Nanyang Technological University. Her current research interests are in the areas of ad hoc and sensor networks, with emphases on network and system security and routing. Patrick J. Moran received his MSEE from Carnegie Mellon University, 1993. He is currently the CTO and Founder of AirSprite Technologies Inc, and is driving the company to utilize advanced networking protocols for low-power wireless network systems. His interests include architecture, protocols and high performance implementation of emerging communication technologies. Patrick has been involved in deployment of communication and signal processing technologies since graduating from the University of Minn. in 1986. He holds several patents and publications relating to storage, medical and data processing information systems. He is a member of the IEEE.  相似文献   

4.
Underwater wireless sensor networks (UWSNs) consist of a group of sensors that send the information to the sonobuoys at the surface level. Void area, however, is one of the challenges faced by UWSNs. When a sensor falls in a void area of communication, it causes problems such as high latency, power consumption, or packet loss. In this paper, an energy‐efficient void avoidance geographic routing protocol (EVAGR) has been proposed to handle the void area with low amount of energy consumption. In this protocol, a suitable set of forwarding nodes is selected using a weight function, and the data packets are forwarded to the nodes inside the set. The weight function includes the consumed energy and the depth of the candidate neighboring nodes, and candidate neighboring node selection is based on the packet advancement of the neighboring nodes toward the sonobuoys. Extensive simulation experiments were performed to evaluate the efficiency of the proposed protocol. Simulation results revealed that the proposed protocol can effectively achieve better performance in terms of energy consumption, packet drop, and routing overhead compared with the similar routing protocol.  相似文献   

5.
Energy allocation problems and routing problems are both important research issues in the wireless sensor network (WSN) field. The former usually aims at considering how to allocate a certain number of sensor devices in a sensing region to form a WSN so that the objective function value (e.g., the network connectivity or the network lifetime) of the constructed network is optimized. For the message routing problem in WSNs, researchers tend to consider how to find an energy conservable message transmission routing scheme for notifying the supervisor of the WSN when an event occurs. Till now, many solutions have been proposed for the above two categories of optimization problems. However, unifying the above two network optimization problems to maximize the network lifetime, to the best of our knowledge, still lacks related research. This paper considers a joint optimization problem for energy allocation and energy‐aware routing called the joint optimization of energy allocation and routing problem (JOEARP) for a hierarchical cluster‐based WSN. We propose an exact algorithm to provide the optimum solution for the JOEARP. The simulation results show that this solution performed better in prolonging the network lifetime of a WSN in a real situation, compared to other compositions of conventional energy allocation schemes with some known routing algorithms. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Localization is an essential and major issue for underwater acoustic sensor networks (UASNs). Almost all the applications in UASNs are closely related to the locations of sensors. In this paper, we propose a multi‐anchor nodes collaborative localization (MANCL) algorithm, a three‐dimensional (3D) localization scheme using anchor nodes and upgrade anchor nodes within two hops for UASNs. The MANCL algorithm divides the whole localization process into four sub‐processes: unknown node localization process, iterative location estimation process, improved 3D Euclidean distance estimation process, and 3D DV‐hop distance estimation process based on two‐hop anchor nodes. In the third sub‐process, we propose a communication mechanism and a vote mechanism to determine the temporary coordinates of unknown nodes. In the fourth sub‐process, we use two‐hop anchor nodes to help localize unknown nodes. We also evaluate and compare the proposed algorithm with a large‐scale localization algorithm through simulations. Results show that the proposed MANCL algorithm can perform better with regard to localization ratio, average localization error, and energy consumption in UASNs. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
As the applications of wireless sensor networks proliferate, the efficiency in supporting large sensor networks and offering security guarantees becomes an important requirement in the design of the relevant networking protocols. Geographical routing has been proven to efficiently cope with large network dimensions while trust management schemes have been shown to assist in defending against routing attacks. Once trust information is available for all network nodes, the routing decisions can take it into account, i.e. routing can be based on both location and trust attributes. In this paper, we investigate different ways to incorporate trust in location‐based routing schemes and we propose a novel way of balancing trust and location information. Computer simulations show that the proposed routing rule exhibits excellent performance in terms of delivery ratio, latency time and path optimality. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Wireless sensor networks (WSNs) typically consist of a large number of battery‐constrained sensors often deployed in harsh environments with little to no human control, thereby necessitating scalable and energy‐efficient techniques. This paper proposes a scalable and energy‐efficient routing scheme, called WCDS‐DCR, suitable for these WSNs. WCDS‐DCR is a fully distributed, data‐centric, routing technique that makes use of an underlying clustering structure induced by the construction of WCDS (Weakly Connected Dominating Set) to prolong network lifetime. It aims at extending network lifetime through the use of data aggregation (based on the elimination of redundant data packets) by some particular nodes. It also utilizes both the energy availability information and the distances (in number of hops) from sensors to the sink in order to make hop‐by‐hop, energy‐aware, routing decisions. Simulation results show that our solution is scalable, and outperforms existing schemes in terms of network lifetime. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
In wireless sensor networks, achieving load balancing in an energy‐efficient manner to improve the network lifetime as much as possible is still a challenging problem because in such networks, the only energy resource for sensor nodes is their battery supplies. This paper proposes a game theoretical‐based solution in the form of a distributed algorithm for constructing load‐balanced routing trees in wireless sensor networks. In our algorithm, load balancing is realized by adjusting the number of children among parents as much as possible, where child adjustment is considered as a game between the parents and child nodes; parents are considered as cooperative players, and children are considered as selfish players. The gained utility by each node is determined by means of some utility functions defined per role, which themselves determine the behavior of nodes in each role. When the game is over, each node gains the maximum benefit on the basis of its utility function, and the balanced tree is constructed. The proposed method provides additional benefits when in‐network aggregation is applied. Analytical and simulation results are provided, demonstrating that our proposed algorithm outperform two recently proposed benchmarking algorithms [1, 2], in terms of time complexity and communication overhead required for constructing the load‐balanced routing trees. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Virtual multi‐input‐multi‐output (vMIMO) technology is becoming a promising way to improve the energy efficiency of wireless networks. Previous research always builds up the vMIMO‐based routing on the fixed structure such as clusters, and the MIMO mode is omitted in most cases. So, they cannot fully explore the advantage of vMIMO in routing. In this paper, we study a general routing scheme in which no fixed structure is required, and any communication mode of vMIMO is allowed for sake of the energy efficiency. We define two vMIMO‐based routing problems aiming to energy‐minimization and lifetime‐optimization. The first problem can be solved by our distributed energy‐minimum vMIMO‐based algorithm. The algorithm constructs the virtual cooperative graph, and applies the shortest path method on the virtual cooperative graph to solve this problem. The second problem is non‐deterministic polynomial‐time hard, and we design the distributed lifetime‐oriented vMIMO‐based algorithm, which is based on the modified Bellman‐Ford method. It can reach approximation ratio of four. The simulations show that our algorithms can work well in many situations. For example, distributed lifetime‐oriented vMIMO‐based algorithm can prolong the lifetime about 20.2% in dense topologies compared with the cooperative routing algorithm on average. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
In 1‐dimensional queue wireless sensor networks, how to balance end‐to‐end latency and energy consumption is a challenging problem. However, traditional best path routing and existing opportunistic routing protocols do not address them well because relay hop counts are usually much more, and the link appears more unreliable compared with general mesh topology. In this work, we formulate these 2 problems as a multiobjective optimization problem. Specifically, we first classify network packets into types of time tolerant and time critical and introduce a residual energy collection mechanism of neighboring nodes for forwarder set selection. We then propose a time‐aware and energy‐efficient opportunistic routing protocol (TE‐OR) to optimize energy consumption and to reduce latency for time‐critical packets. We evaluate TE‐OR by different parameters and compare it with existing protocols. The performance results show that TE‐OR achieves a trade‐off between energy consumption and time delay and balances energy consumption among nodes while guaranteeing the latency of time‐critical packets is minimized.  相似文献   

12.
随着网络负载增加,经典的TPGF( Two-Phase geographic Greedy Forwarding)算法难以找到节点分离路径,会导致网络吞吐量、投递率以及端到端时延性能下降。此外,当网络拓扑变动不大时, TPGF中每条路径所包含节点要消耗比其他节点更多的能量,会导致其过快死亡,从而影响网络性能。为此,将联合网络编码技术引入 TPGF,提出一种编码与能量感知的 TPGF 路由算法( NE-TPGF)。该算法综合考虑节点的地理位置、编码机会、剩余能量等因素,同时利用联合网络编码技术进一步扩展编码结构,充分利用网络编码优势来建立相对最优的传输路径。仿真结果表明, NE-TPGF能够增加编码机会,提高网络吞吐量和投递率,降低端到端时延,并且还有利于减少和平衡节点的能量消耗。  相似文献   

13.
Recently, underwater wireless sensor networks (UWSNs) have attracted much research attention to support various applications for pollution monitoring, tsunami warnings, offshore exploration, tactical surveillance, etc. However, because of the peculiar characteristics of UWSNs, designing communication protocols for UWSNs is a challenging task. Particularly, designing a routing protocol is of the most importance for successful data transmissions between sensors and the sink. In this paper, we propose a reliable and energy‐efficient routing protocol, named R‐ERP2R (Reliable Energy‐efficient Routing Protocol based on physical distance and residual energy). The main idea behind R‐ERP2R is to utilize physical distance as a routing metric and to balance energy consumption among sensors. Furthermore, during the selection of forwarding nodes, link quality towards the forwarding nodes is also considered to provide reliability and the residual energy of the forwarding nodes to prolong network lifetime. Using the NS‐2 simulator, R‐ERP2R is compared against a well‐known routing protocol (i.e. depth‐based routing) in terms of network lifetime, energy consumption, end‐to‐end delay and delivery ratio. The simulation results proved that R‐ERP2R performs better in UWSNs.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
无线传感器网络地理路由协议要求节点根据少量本地路由信息将数据分组传输路由到目标节点。为了消除路由环,地理路由算法通常需要将网络拓扑平面化。然而现有的平面化算法要么假设节点的通信半径是一固定值,在实际应用中不适用;要么对每一条链路都进行检测是否有交叉链路,路由维护代价很高。针对以上问题,提出一种具有高可靠性和低维护成本的地理路由协议RPR(region partitioning-based routing),其基本思想是将网络划分为规则多边形区域,并在贪心路由失败时将多边形区域内的所有节点看作一个虚拟节点进行周边路由。多边形区域间通信能够降低平均路由路径长度,从而提高了路由的可靠性。基于区域划分的网络平面化策略不需要检测和删除相交链路,因此减少了路由维护开销。模拟实验结果显示,RPR协议比现有方法的平均路由路径长度更短,路由维护开销更低。  相似文献   

15.
In this paper, we design a localized power‐aware alternate routing (LPAR) protocol for dynamic wireless ad hoc networks. The design objective is to prolong the lifetime of wireless ad hoc networks wherein nodes can adaptively adjust their transmission power based on communication ranges. LPAR achieves this goal via two phases. In the first phase, energy draining balancing is achieved by identifying end‐to‐end paths with high residual energy. The second phase is designed to effectively reduce the power consumed for packet forwarding. This is achieved by iteratively performing adaptive localized power‐aware alternate rerouting to bypass each (potentially) high‐power link along the end‐to‐end path identified in the first phase. Further, the design of LPAR enables nodes to collect their neighborhood information ‘on‐demand’, which can effectively reduce the overhead for gathering such information. LPAR is suitable for both homogeneous and non‐homogeneous networks. Simulation results demonstrate that LPAR achieves improved performance in reducing protocol overhead and also in prolonging network lifetime as compared with existing work. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Power-aware single- and multipath geographic routing in sensor networks   总被引:1,自引:0,他引:1  
Shibo  K. Seluk 《Ad hoc Networks》2007,5(7):974-997
Nodes in a sensor network, operating on power limited batteries, must save power to minimize the need for battery replacement. We note that the range of transmission has a significant effect on the power consumption of both the transmitting node and listeners. This paper first presents a Geographical Power Efficient Routing (GPER) protocol for sensor networks. Each sensor node makes local decisions as to how far to transmit: therefore, the protocol is power efficient, localized, highly distributed, and scalable. In GPER, given a final destination, each node first establishes a subdestination within its maximum radio range. The node, however, may decide to relay the packet to this subdestination through an intermediary node or alter the subdestination if this will preserve power. Traditional deterministic geographic routing algorithms aim at achieving close to the shortest weighted paths. However, they normally stick to the same paths for the same source/destination pairs. This may conversely drain the nodes on these paths and result in short network life when the communication in the network is unevenly distributed. Thus, we further investigate a set of probabilistic multipath routing algorithms, which generate braided multipaths based only on local information. The algorithms have less communication and storage overhead than conventional on-demand multipath routing algorithms, while providing greater resilience to node failures. Simulations on NS2 show that GPER almost halves the power consumption in the network relative to alternative geographic routing algorithms. Furthermore, in situations where the communication tasks are non-uniformly distributed, probabilistic multipath routing contributes up to an additional 30% to network lifetime.  相似文献   

17.
In many applications, sensor nodes are deployed in a 3D environment with obstacles, in which case a great deal of holes exist in 3D wireless sensor networks constructed. Recently, several geographic routing protocols are proposed for 3D wireless sensor networks. Each of them, however, cannot guarantee packet delivery or demands a long routing path to turn around a hole. In this paper, we first introduce a method of constructing a guide to the navigation on the surface of a hole. Subsequently, a geographic routing protocol termed the Greedy‐Guide_Navigation‐Greedy protocol (GGNG) that can always route a packet to turn around a hole with the help of the guide is proposed. GGNG guarantees packet delivery and can be extended toward a mobile sensor network in a limited 3D space. Simulations show that the path stretch of each routing protocol to GGNG in approximately 90 % of the cases is between 1.02 and 189.24. In addition, the number of messages transmitted by a node surrounding a hole in the guide construction is approximately three. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
The utilization of limited energy in wireless sensor networks (WSNs) is the critical concern, whereas the effectiveness of routing mechanisms substantially influence energy usage. We notice that two common issues in existing specific routing schemes for WSNs are that (i) a path may traverse through a specific set of sensors, draining out their energy quickly and (ii) packet retransmissions over unreliable links may consume energy significantly. In this paper, we develop an energy‐efficient routing scheme (called EFFORT) to maximize the amount of data gathered in WSNs before the end of network lifetime. By exploiting two natural advantages of opportunistic routing, that is, the path diversity and the improvement of transmission reliability, we propose a new metric that enables each sensor to determine a suitable set of forwarders as well as their relay priorities. We then present EFFORT, a routing protocol that utilizes energy efficiently and prolongs network lifetime based on the proposed routing metric. Simulation results show that EFFORT significantly outperforms other routing protocols. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
In many applications and scenarios, sensors have to regularly report what they monitor from the environment and quickly notify the sink node of event occurrence in the sensing field. An in‐network data reduction technique, such as data aggregation and data compression, can help diminish the amount of data sent from sensors, which not only saves the network bandwidth but also preserves sensors' energy. However, such technique does not consider packet latency because of the aggregation or compression operation. When some sensors generate regular reports in lower data rates, their packets have to spend longer time to be aggregated or compressed, resulting in higher packet delays. Besides, when events occur, the network could suffer from instant congestion due to the generation of numerous event notifications. Motivated with the aforementioned observations, the paper develops a lightweight, latency‐aware routing for data compression (L2DC) scheme to reduce packet latency when applying the compression technique, to reduce the amount of data generated from sensors. L2DC gives event notifications a higher priority over regular reports and eliminates unnecessary notifications to avoid bursty network congestion. In addition, L2DC facilitates the data compression process by allowing each sensor to determine whether to keep packets for compression locally or to send them to a neighbor to be compressed in a distributed manner. Our L2DC scheme can be easily built on most ad hoc and sensor routing protocols because it provides auxiliary redundant packet elimination and relay node selection mechanisms to reduce packet latency. By using the ad hoc on‐demand distance vector protocol as the example, simulation results demonstrate the effectiveness of the L2DC scheme. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Wireless sensor network (WSN) should be designed such that it is able to identify the faulty nodes, rectify the faults, identify compromised nodes from various security threats, and transmit the sensed data securely to the sink node under faulty conditions. In this paper, we propose an idea of integrating fault tolerance and secured routing mechanism in WSN named as fault tolerant secured routing: an integrated approach (FASRI) that establishes secured routes from source to sink node even under faulty node conditions. Faulty nodes are identified using battery power and interference models. Trustworthy nodes (non‐compromised) among fault‐free nodes are identified by using agent‐based trust model. Finally, the data are securely routed through fault‐free non‐compromised nodes to sink. Performance evaluation through simulation is carried out for packet delivery ratio, hit rate, computation overhead, communication overhead, compromised node detection ratio, end‐to‐end delay, memory overhead, and agent overhead. We compared simulation results of FASRI with three schemes, namely multi‐version multi‐path (MVMP), intrusion/fault tolerant routing protocol (IFRP) in WSN, and active node‐based fault tolerance using battery power and interference model (AFTBI) for various measures and found that there is a performance improvement in FASRI compared with MVMP, IFRP, and AFTBI. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号