首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Embedding the time encoding approach inside the loop of the sigma‐delta modulators has been shown as a promising alternative to overcome the resolution problems of analog‐to‐digital converters in low‐voltage complementary metal‐oxide semiconductor (CMOS) circuits. In this paper, a wideband noise‐transfer‐function (NTF)‐enhanced time‐based continuous‐time sigma‐delta modulator (TCSDM) with a second‐order noise‐coupling is presented. The proposed structure benefits from the combination of an asynchronous pulse width modulator as the voltage‐to‐time converter and a time‐to‐digital converter as the sampler to realize the time quantization. By using a novel implementation of the analog‐based noise‐coupling technique, the modulator's noise‐shaping order is improved by two. The concept is elaborated for an NTF‐enhanced second‐order TCSDM, and the comparative analytical calculations and behavioral simulation results are presented to verify the performance of the proposed structure. To further confirm the effectiveness of the presented structure, the circuit‐level implementation of the modulator is provided in Taiwan Semiconductor Manufacturing Company (TSMC) 90 nm CMOS technology. The simulation results show that the proposed modulator achieves a dynamic range of 84 dB over 30 MHz bandwidth while consuming less than 25 mW power from a single 1 V power supply. With the proposed time‐based noise‐coupling structure, both the order and bandwidth requirements of the loop filter are relaxed, and as a result, the analog complexity of the modulator is significantly reduced. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
A behavioral model for switched‐capacitors sigma‐delta modulators, suitable for power‐driven design, is presented. Because of the oversampling behavior of this kind of analog‐to‐digital converters, transistor‐level simulations are extremely time consuming. Thus, accurate behavioral models are mandatory in the preliminary design steps to cut the development time. However, when the power consumption of the modulator is pushed down to the absolute minimum level, second‐order effects affecting the settling behavior of the switched‐capacitor integrator must be taken into account. Furthermore, by means of an accurate noise model, based on a second‐order transfer function of the amplifier, a global power minimization is achieved, and the optimum partitioning between the switch and op‐amp noise is obtained. In spite of the improved accuracy, the proposed model requires only a few parameters of the amplifier in the integrator. This allows to easily link the model to an external set of circuit equations, to be derived for the specific amplifier used in the modulator. The model was used in the design of a third‐order modulator in an STM 90‐nm technology. The silicon samples exhibit an effective resolution of 15.2‐b with a 500‐Hz output rate, an oversampling ratio of 500, and a Schreier figure‐of‐merit of 162 dB, with a 38‐μW power consumption at 1.2‐V supply.  相似文献   

3.
This paper presents a technique for mitigating two well‐known DAC non‐idealities in continuous‐time delta‐sigma modulators (CTDSMs), particularly in wide‐band and low over‐sampling‐ratio (OSR) cases. This technique employs a special digital‐to‐analog convertor (DAC) waveform, called modified return‐to‐zero (MRZ), to reduce the time uncertainty effect because of the jittered clock at the sampling time instances and eliminate the effect of inter‐symbol‐interference (ISI) which degrades the modulator performance, especially when non‐return‐to‐zero (NRZ) DAC waveform is chosen in the modulator design. A third‐order single‐bit CTDSM is designed based on the proposed technique and step‐by‐step design procedure at circuit and system levels, considering clock jitter and ISI, is explained. Circuit simulations in 180‐nm CMOS technology show that in the presence of circuit non‐idealities which generate jitter and asymmetrical rise and fall times in the DAC current pulse, signal‐to‐noise‐distortion‐ratio (SNDR) of the proposed modulator is higher than the conventional modulator with NRZ waveform by about 10 dB. In these simulations, clock jitter standard deviation is 0.3% of the sampling period (TS) and the difference between fall/rise times in the DAC current pulse is 4%TS. Simulated at 600‐MHz sampling frequency (fS) with an oversampling ratio (OSR) of 24, SNDR figure of merit (FOMSNDR) of the proposed modulator in 180‐nm CMOS is 300 fj/conversion. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
This study presents an ultra‐low‐power, small‐size, 1‐bit, single‐ended, and switched‐capacitor (SC) delta‐sigma analog‐to‐digital converter (ADC) for wireless acoustic sensor nodes. This wireless sensor node has a delta‐sigma ADC that converts the sensed signal to a digital signal for convenient data processing and emphasizes the features of small size and low‐power consumption. The chip area of the delta‐sigma ADC is dominated by the capacitor; therefore, a novel common‐mode (CM) controlling technique with only transistors is proposed. This ADC achieves an extremely small size of 0.08 mm2 in a 130‐nm CMOS process. The conventional operational transconductance amplifiers (OTAs) are replaced by inverters in the weak inversion region to achieve high power efficiency. At 4‐MHz sampling frequency and 0.7‐V power supply voltage, the delta‐sigma ADC achieves a 55.8‐dB signal‐to‐noise‐plus‐distortion ratio (SNDR) and a 298‐fJ/step figure‐of‐merit (FOM) in a signal bandwidth of 25 kHz, while consuming only 7.5 μW of power. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
This study proposes a subsystem consisting of an analog buffer and a single‐ended input to a fully differential ΔΣ modulator to obtain low‐power consumption for portable electrocardiogram applications. With the proposed subsystem, the need for an inverting amplifier is avoided, and low‐power consumption is achieved. The ΔΣ modulator with a second order, 1 bit, and cascade of integrators feedforward structure consumes a low power, in which an inverting and a non‐inverting path implement a single‐ended input to fully‐differential signals. A double sampling technique is proposed for a digital‐to‐analog converter feedback circuit to reduce the effect of the reference voltage, reduce the amplifier requirements, and obtain low‐power consumption. Input‐bias and output‐bias transistors working in the weak‐inversion region are implemented to obtain an extremely large swing for the analog buffer. At a supply voltage of 1.2 V, signal bandwidth of 250 Hz, and sampling frequency of 128 kHz, the measurement results show that the modulator with a buffer achieves a 77 dB peak signal‐to‐noise‐distortion ratio, an effective‐number‐of‐bits of 12.5 bits, an 83 dB dynamic range, and a figure‐of‐merit of 156 dB. The total chip size is approximately 0.28 mm2 with a standard 0.13 µm Complementary Metal‐Oxide‐Silicon (CMOS) process. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
This paper describes the design and the implementation of a 6th‐order bandpass ΣΔ modulator to be used for IF digitizing at 10.7 MHz of a broadcasting FM radio signal. The modulator is sampled at 37.05 MHz. This sampling frequency value allows to optimize both modulator and overall receiver channel performance. The modulator has been implemented in a standard double‐poly 0.35 µm CMOS technology using switched capacitor (SC) technique and consumes 116 mW from a single 3.3 V power supply. The modulator features 75 dB dynamic range and 66 dB peak‐SNR within a 200 kHz bandwidth (FM bandwidth). Third‐order intermodulation products are suppressed by –78dBc. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, a new type of an oscillatory noise‐shaped quantizer (NSQ) for time‐based continuous‐time sigma‐delta modulators is presented. The proposed NSQ is composed of an oscillatory voltage‐to‐time converter and a polyphase sampler. Using Tustin's transformation method and through the approximation of the comparator gain, a linearized model of the NSQ is introduced. This way, a novel realization of the first‐ and second‐order NSQ is presented. Its implementation is based on fully passive continuous‐time filters without needing any amplifier or power consuming element. The ploy‐phase sampler inside the NSQ is based on the combination of a time‐to‐digital and a digital‐to‐time converter. The layout of the proposed NSQ is provided in Taiwan Semiconductor Manufacturing Company 0.18 μm complementary metal‐oxide‐semiconductor 1P6M technology. The verification of the proposed NSQ is done via investigating both the system level and postlayout simulation results. Leveraging the proposed NSQ in an Lth‐order time‐based continuous‐time sigma‐delta modulator enhances the noise‐shaping order up to L + 2, confirming its superior effectiveness. This makes it possible to design high performance and wideband continuous‐time SDMs with low power consumption and relaxed design complexity.  相似文献   

8.
In this work, a power‐area‐efficient, 3‐band, 2‐RX MIMO, and TD‐LTE (backward compatible with the HSPA+, HSUPA, HSDPA, and TD‐SCDMA) CMOS receiver is presented and implemented in 0.13‐μm CMOS technology. The continuous‐time delta‐sigma A/D converters (CT ?Σ ADCs) are directly coupled to the outputs of the transimpedance amplifiers, eliminating the need of analog anti‐aliasing filters between RX front‐end and ADCs in conventional structures. The strong adjacent channel interference without low‐pass filter attenuation is handled by proper gain control. A low‐power small‐area solution for excess loop delay compensation is implemented in the CT ?Σ ADC. At 20 MHz bandwidth, the CT ?Σ ADC achieves 66 dB dynamic range and 3.5 dB RX chip noise figure is measured. A maximum of 2.4 dB signal‐to‐noise ratio degradation is measured in all the adjacent channel selectivity (ACS) and blocking tests, demonstrating the effectiveness of the strategy against the low‐pass filter removal from the conventional architecture. The receiver dissipates a maximum of 171 mW at 2‐RX MIMO mode. To our best knowledge, it is the first research paper on the design of fully integrated commercial TD‐LTE receiver. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, based on mathematical approaches and behavioral modeling of internal blocks, an algorithm of designing a continuous‐time delta‐sigma modulator (CT ΔΣM) with aggressive noise shaping is discussed. Using proposed methods, the coefficients of modulator can be calculated directly while the finite gain‐band‐width of amplifiers and rise/fall time of digital‐to‐analog convertors (DACs) in feedback path are included in the transfer function of CT loop filter. To decrease the number of amplifiers, a unique resonator is proposed. Also, an extra feedback DAC is introduced to further reduction of gain‐band‐width requirement of last amplifier. To verify the effectiveness of proposed methods, a fourth‐order, single loop, CT ΔΣM that benefits proportional‐integrator element for compensation of excess‐loop‐delay is realized in system and behavioral circuit levels. It has a 4‐bit quantizer, over‐sampling‐ratio of 10, and out‐of‐band‐gain of 12 dB. The peaking in signal‐transfer‐function is alleviated using a feed‐forward capacitor along with proper choosing of rest coefficients. The designed modulator has 78‐dB signal‐to‐noise‐ratio; even the non‐ideal behaviors of amplifiers and DACs are involved in simulations. Independent to sampling frequency, the proposed methods can be applied to other topologies of CT ΔΣMs. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
Active‐RC biquad is proposed, which allows the DC level of the input of operational amplifier (op‐amp) to be different from that of the op‐amp output, enabling the low‐voltage operation. The proposed biquad realizes a second‐order transfer function with only one op‐amp, rendering even lower power consumption. By cascading two biquads, a 0.6 V fourth‐order filter is realized in a 0.13µm CMOS technology. While dissipating only 0.42 mW, the filter shows 2.11 MHz cut‐off frequency and 62 dB spurious‐free dynamic range. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
Burst‐mode operation of power amplifier (PA) based on multilevel pulse‐width modulation (MPWM) has been frequently discussed as a potential solution to achieve higher efficiency in radio frequency (RF) transmitters. In this paper, a novel multilevel PWM modulator is proposed that utilizes adaptive triangular reference waveforms. As compared with conventional MPWM modulators, the proposed architecture provides significant wider design space such that the efficiency of system can be effectively optimized. A general transmitter architecture based on the proposed concept is analyzed in terms of power efficiency. Efficiency optimization procedures are presented according to input magnitude statistics. Based on the proposed modulator, an optimized 2.4‐GHz RF transmitter is designed in a 0.18‐μm complementary metal‐oxide‐semiconductor (CMOS) process. The circuit‐level simulations show that it delivers 25.8‐dBm peak output power with 46.1% peak efficiency. For a 20‐MHz worldwide interoperability for microwave access (WiMAX) signal with 8.5‐dB peak‐to‐average‐power ratio (PAPR), this transmitter achieves 28.8% (average) efficiency at 17.3‐dBm (average) output power with an error vector magnitude (EVM) of 2.97% rms.  相似文献   

12.
In this paper, a band‐pass filter with a tunable bandwidth and the center frequency is introduced, which employs N‐path and N × M‐path passive mixer structures, for multiband multistandard wireless receivers. The center frequency of the proposed filter is tunable from 0.1 to 1 GHz, while its bandwidth is also adjustable from 6% to 34% of the center frequency at 100 MHz. The passband ripple is reduced by applying a Miller compensation technique, resulting in a worst‐case ripple of only 1.6 dB over the entire tuning range. An additional eight‐path filter is also utilized at the input of the circuit, which highly improves the out‐of‐band rejection of the filter as well as its out‐of‐band linearity. The noise figure and the input return loss are, respectively, better than 5 and 10 dB, and depending on the desired center frequency, the total power consumption of the proposed filter varies from 41 to 70 mW.  相似文献   

13.
A design procedure for high‐order continuous‐time intermediate‐frequency band‐pass filters based on the cascade of low‐Q biquadratic cells is presented. The approach is well suited for integrated‐circuit fabrication, as it takes into account the maximum capacitance spread dictated by the available technology and maximum acceptable sensitivity to component variations. A trade‐off between noise and maximum linear range is also met. A novel, wide‐tuning‐range transconductor topology is also described. Based on these results, a 10‐pole band‐pass filter for a code division multiple‐access satellite receiver has been designed and tested. The filter provides tunable center frequency (f0) from 10 to 70 MHz and exhibits a 28‐MHz bandwidth around f0 = 70 MHz with more than 39‐dB attenuation at f0/2 and 2f0. Third‐order harmonic rejection is higher than 60 dB for a 1‐Vpp 70‐MHz input, and equivalent output noise is lower than 1 mVrms. The circuit is fabricated in a 0.25‐µm complementary metal oxide semiconductor process, and the core consumes 12 mA from a 2.5‐V supply, offering the best current/pole ratio figure. The die area resulted to be 0.9 × 1.1 mm2. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
The leap‐frog (LF) configuration is an important structure in analogue filter design. Voltage‐mode LF OTA‐C filters have recently been studied in the literature; however, general explicit formulas do not exist for current‐mode LF OTA‐C filters and there is also need for current‐mode LF‐based OTA‐C structures for realization of arbitrary transmission zeros. Three current‐mode OTA‐C structures are presented, including the basic LF structure and LF filters with an input distributor or an output summer. They can realize all‐pole characteristics and functions with arbitrary transmission zeros. Explicit design formulas are derived directly from these structures for the synthesis of, respectively, all‐pole and arbitrary zero filter characteristics of up to the sixth order. The filter structures are regular and the design formulas are straightforward to use. As an illustrative example, a 300 MHz seventh‐order linear phase low‐pass filter with zeros is presented. The filter is implemented using a fully differential linear operational transconductance amplifier (OTA) based on a source degeneration topology. Simulations in a standard TSMC 0.18µm CMOS process with 2.5 V power supply have shown that the cutoff frequency of the filter ranges from 260 to 320 MHz, group delay ripple is about 4.5% over the whole tuning range, noise of the filter is 420nA/√Hz, dynamic range is 66 dB and power consumption is 200 mW. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
A CMOS amplifier employing the frequency selective feedback technique using a shunt feedback capacitor is designed and measured. The proposed amplifier can achieve a high IIP3 (input referred third‐order intercept point) by reducing the third‐ and second‐order nonlinearity contributions to the IMD3 (third‐order intermodulation distortion), which is accomplished using a capacitor as the frequency selective element. Also, the shunt feedback capacitor improves the noise performance of the amplifier. By applying the technique to a cascode LNA using 0.18‐µm CMOS technology, we obtain the NF of 0.7 dB, an IIP3 of +8.2 dBm, and a gain of 15.1 dB at 14.4 mW of power consumption at 900 MHz. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
A novel 1.57 GHz complementary metal–oxide semiconductor inductor–capacitor voltage‐controlled oscillator with the common‐mode replica compensation is introduced for mixed‐signal system‐on‐chip applications. In order to alleviate power line disturbances, the center tap node of differential symmetric inductor and the replica biasing circuit are adopted in the differential voltage regulating unit to reduce power supply sensitivity. In addition, this proposed design also leads to low tuning gain and low power dissipation. The post‐layout simulation results under the Taiwan Semiconductor Manufacturing Company's mixed‐signal 0.18 µm 1P6M process show that the proposed design achieves power supply rejection of ?68.6 dB at low frequencies and 1.2 MHz/V pushing sensitivity. It exhibits phase noise of ?130.6 dBc/Hz at a 1 MHz offset from a 1.57 GHz carrier yet dissipates only 5.58 mW under a 1.8 V power supply. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
This paper proposes a 10 b 25 MS/s 4.8 mW 0.13 µm CMOS analog‐to‐digital converter (ADC) for high‐performance portable wireless communication systems, such as digital video broadcasting, digital audio broadcasting, and digital multimedia broadcasting (DMB) systems, simultaneously requiring a low‐voltage, low‐power, and small chip area. A two‐stage pipeline architecture optimizes the overall chip area and power dissipation of the proposed ADC at the target resolution and sampling rate, while switched‐bias power‐reduction techniques reduce the power consumption of the power‐hungry analog amplifiers. Low‐noise reference currents and voltages are implemented on chip with optional off‐chip voltage references for low‐power system‐on‐a‐chip applications. An optional down‐sampling clock signal selects a sampling rate of 25 or 10 MS/s depending on applications in order to further reduce the power dissipation. The prototype ADC fabricated in a 0.13 µm 1P8M CMOS technology demonstrates a measured peak differential non‐linearity and integral non‐linearity within 0.42 LSB and 0.91 LSB and shows a maximum signal‐to‐noise‐and‐distortion ratio and spurious‐free dynamic range of 56 and 65 dB at all sampling frequencies up to 25 MHz, respectively. The ADC with an active die area of 0.8 mm2 consumes 4.8 and 2.4 mW at 25 and 10 MS/s, respectively, with a 1.2 V supply. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
A novel sub‐threshold 9 T Static Random Access Memory (SRAM) cell designed and simulated in 14‐nm FinFET technology is proposed in this paper. The proposed 9 T‐SRAM cell offers an improved access time in comparison to the 8 T‐SRAM cell. Furthermore, an assist circuit is proposed by which the leakage current of the proposed SRAM cell is reduced by 20% when holding ‘0’ and an equal leakage current during hold ‘1’ in comparison to the 8 T‐SRAM cell. The proposed circuit improves the access time by 40% in comparison to the 8 T‐SRAM cell without any degradation in write and read noise margins, as well. The maximum operating frequency of the proposed SRAM cell is 1.53 MHz at VDD = 270 mV. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
This paper presents a 67GHz LC oscillator exploiting a three‐spiral transformer and implemented in 65nm bulk complementary metal–oxide–semiconductor technology by STMicroelectronics. The three‐spiral transformer allows operating with a lower voltage supply, still obtaining good phase noise performance, and achieving a compact design. Measured performances when supplied with 1.2 V are: oscillation frequency of 67 GHz, phase noise (PN) equal to ?96 dBc/Hz at 1 MHz frequency offset from the carrier, power consumption (PC) equal to 19.2 mW and figure of merit (FOM) equal to ?179.7 dB/Hz. Measured performances when supplied with 0.6 V are: oscillation frequency of 67 GHz; PN equal to ?88.7 dBc/Hz at a 1 MHz frequency offset from the carrier; PC equal to 3.6 mW and FOM equal to ?179.7 dB/Hz. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
This work proposes a 14 b 150 MS/s CMOS A/D converters (ADC) for software‐defined radio systems requiring simultaneously high‐resolution, low‐power, and small chip area at high speed. The proposed calibration‐free ADC employs a wide‐band low‐noise input sample‐and‐hold amplifier (SHA) along with a four‐stage pipelined architecture optimizing scaling‐down factors for the sampling capacitance and the input trans‐conductance of amplifiers in each stage to minimize thermal noise effect and power consumption. A signal‐insensitive 3‐D fully symmetric layout achieves a 14 b level resolution by reducing a capacitor mismatch of three MDACs. The prototype ADC in a 0.13µm 1P8M CMOS technology demonstrates a measured differential nonlinearity (DNL) and integral nonlinearity within 0.81LSB and 2.83LSB at 14 b, respectively. The ADC shows a maximum signal‐to‐noise‐and‐distortion ratio of 64 and 61 dB and a maximum spurious‐free dynamic range of 71 and 70 dB at 120 and 150 MS/s, respectively. The ADC with an active die area of 2.0mm2 consumes 140 mW at 150 MS/s and 1.2 V. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号