首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents two new routing protocols for mobile sensor networks, viz. power‐controlled routing (PCR) and its enhanced version, i.e. Enhanced Power‐Controlled Routing (EPCR). In both the protocols, fixed transmission power is employed in the clustering phase but when ordinary nodes are about to send their data to their respective cluster‐heads, they change their transmission power according to their distance from their cluster‐head. While in PCR, the nodes are associated with the cluster‐head on the basis of weight, in EPCR it is done on the basis of distance. In addition to the protocols, we are suggesting a packet loss recovery mechanism for the PCR and EPCR. Both protocols work well for both mobile and static networks and are designed to achieve high network lifetime, high packet delivery ratio, and high network throughput. These protocols are extensively simulated using mass mobility model, with different speeds and different number of nodes to evaluate their performance. Simulation results show that both PCR and EPCR are successful in achieving their objectives by using variable transmission powers and smart clustering. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Energy conservation and fault tolerance are two critical issues in the deployment of wireless sensor networks (WSNs). Many cluster‐based fault‐tolerant routing protocols have been proposed for energy conservation and network lifetime maximization in WSNs. However, these protocols suffer from high frequency of re‐clustering as well as extra energy consumption to tolerate failures and consider only some very normal parameters to form clusters without any verification of the energy sufficiency for data routing. Therefore, this paper proposes a cluster‐based fault‐tolerant routing protocol referred as CFTR. This protocol allows higher energy nodes to become Cluster Heads (CHs) and operate multiple rounds to diminish the frequency of re‐clustering. Additionally, for the sake to get better energy efficiency and balancing, we introduce a cost function that considers during cluster formation energy cost from sensor node to CH, energy cost from CH to sink, and another significant parameter, namely, number of cluster members in previous round. Further, the proposed CFTR takes care of nodes, which have no CH in their communication range. Also, it introduces a routing algorithm in which the decision of next hop CH selection is based on a cost function conceived to select routes with sufficient energy for data transfer and distribute uniformly the overall data‐relaying load among the CHs. As well, a low‐overhead algorithm to tolerate the sudden failure of CHs is proposed. We perform extensive simulations on CFTR and compare their results with those of two recent existing protocols to demonstrate its superiority in terms of different metrics.  相似文献   

3.
High-throughput multicast routing metrics in wireless mesh networks   总被引:2,自引:0,他引:2  
The stationary nature of nodes in a mesh network has shifted the main design goal of routing protocols from maintaining connectivity between source and destination nodes to finding high-throughput paths between them. Numerous link-quality-based routing metrics have been proposed for choosing high-throughput routing paths in recent years. In this paper, we study routing metrics for high-throughput tree or mesh construction in multicast protocols. We show that there is a fundamental difference between unicast and multicast routing in how data packets are transmitted at the link layer, and accordingly how the routing metrics for unicast routing should be adapted for high-throughput multicast routing. We propose a low-overhead adaptive online algorithm to incorporate link-quality metrics to a representative multicast routing protocol. We then study the performance improvement achieved by using different link-quality-based routing metrics via extensive simulation and experiments on a mesh-network testbed, using ODMRP as a representative multicast protocol.Our extensive simulation studies show that: (1) ODMRP equipped with any of the link-quality-based routing metrics can achieve higher throughput than the original ODMRP. In particular, under a tree topology, on average, ODMRP enhanced with link-quality routing metrics achieve up to 34% higher throughput than the original ODMRP under low multicast sending rate; (2) the improvement reduces to 21% under high multicast sending rate due to higher interference experienced by the data packets from the probe packets; (3) heavily penalizing lossy links is an effective way in the link-quality metric design to avoid low-throughput paths; and (4) the path redundancy from a mesh data dissemination topology in mesh-based multicast protocols provides another degree of robustness to link characteristics and reduces the additional throughput gain achieved by using link-quality-based routing metrics. Finally, our experiments on an eight-node testbed show that on average, ODMRP using SPP and PP achieves 14% and 17% higher throughput over ODMRP, respectively, validating the simulation results.  相似文献   

4.
Energy efficiency has become an important design consideration in geographic routing protocols for wireless sensor networks because the sensor nodes are energy constrained and battery recharging is usually not feasible. However, numerous existing energy‐aware geographic routing protocols are energy‐inefficient when the detouring mode is involved in the routing. Furthermore, most of them rarely or at most implicitly take into account the energy efficiency in the advance. In this paper, we present a novel energy‐aware geographic routing (EAGR) protocol that attempts to minimize the energy consumption for end‐to‐end data delivery. EAGR adaptively uses an existing geographic routing protocol to find an anchor list based on the projection distance of nodes for guiding packet forwarding. Each node holding the message utilizes geographic information, the characteristics of energy consumption, and the metric of advanced energy cost to make forwarding decisions, and dynamically adjusts its transmission power to just reach the selected node. Simulation results demonstrate that our scheme exhibits higher energy efficiency, smaller end‐to‐end delay, and better packet delivery ratio compared to other geographic routing protocols. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Using geographic routing, like GPSR, is efficient for ad hoc and wireless sensor networks, but it requires that nodes be aware of their physical positions. However, if there are holes in the network, routing across them using GPSR will lead to a lot of overloaded nodes on their boundaries. In this paper, we propose a distributed protocol, named hexagonal virtual coordinate (HVC), for constructing a virtual coordinate system. After the HVC is constructed, the nodes in the network will be aware of the relative coordinates among the landmarks through the HVC chart. Based on the HVC chart, a source node can find an auxiliary routing path (ARP) to indicate the direction of the journey from the source to the destination. Simulation results show that our protocol can support geographic routing efficiently, and the landmarks found by our protocol are uniformly located in the network even if some holes exist within it. In addition, our protocol is resilient to various network shapes and can find a load balancing routing path to the destination even if this path comes across holes in the network. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
In many applications, sensor nodes are deployed in a 3D environment with obstacles, in which case a great deal of holes exist in 3D wireless sensor networks constructed. Recently, several geographic routing protocols are proposed for 3D wireless sensor networks. Each of them, however, cannot guarantee packet delivery or demands a long routing path to turn around a hole. In this paper, we first introduce a method of constructing a guide to the navigation on the surface of a hole. Subsequently, a geographic routing protocol termed the Greedy‐Guide_Navigation‐Greedy protocol (GGNG) that can always route a packet to turn around a hole with the help of the guide is proposed. GGNG guarantees packet delivery and can be extended toward a mobile sensor network in a limited 3D space. Simulations show that the path stretch of each routing protocol to GGNG in approximately 90 % of the cases is between 1.02 and 189.24. In addition, the number of messages transmitted by a node surrounding a hole in the guide construction is approximately three. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
The utilization of limited energy in wireless sensor networks (WSNs) is the critical concern, whereas the effectiveness of routing mechanisms substantially influence energy usage. We notice that two common issues in existing specific routing schemes for WSNs are that (i) a path may traverse through a specific set of sensors, draining out their energy quickly and (ii) packet retransmissions over unreliable links may consume energy significantly. In this paper, we develop an energy‐efficient routing scheme (called EFFORT) to maximize the amount of data gathered in WSNs before the end of network lifetime. By exploiting two natural advantages of opportunistic routing, that is, the path diversity and the improvement of transmission reliability, we propose a new metric that enables each sensor to determine a suitable set of forwarders as well as their relay priorities. We then present EFFORT, a routing protocol that utilizes energy efficiently and prolongs network lifetime based on the proposed routing metric. Simulation results show that EFFORT significantly outperforms other routing protocols. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
A utility‐based distributed data routing algorithm is proposed and evaluated for heterogeneous wireless sensor networks. It is energy efficient and is based on a game‐theoretic heuristic load‐balancing approach. It runs on a hierarchical graph arranged as a tree with parents and children. Sensor nodes are considered heterogeneous in terms of their generated traffic, residual energy and data transmission rate and the bandwidth they provide to their children for communication. The proposed method generates a data routing tree in which child nodes are joined to parent nodes in an energy‐efficient way. The principles of the Stackelberg game, in which parents as leaders and children as followers, are used to support the distributive nature of sensor networks. In this context, parents behave cooperatively and help other parents to adjust their loads, while children act selfishly. Simulation results indicate the proposed method can produce on average more load‐balanced trees, resulting in over 30% longer network lifetime compared with the cumulative algorithm proposed in the literature. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Balancing the load among sensor nodes is a major challenge for the long run operation of wireless sensor networks. When a sensor node becomes overloaded, the likelihood of higher latency, energy loss, and congestion becomes high. In this paper, we propose an optimal load balanced clustering for hierarchical cluster‐based wireless sensor networks. We formulate the network design problem as mixed‐integer linear programming. Our contribution is 3‐fold: First, we propose an energy aware cluster head selection model for optimal cluster head selection. Then we propose a delay and energy‐aware routing model for optimal inter‐cluster communication. Finally, we propose an equal traffic for energy efficient clustering for optimal load balanced clustering. We consider the worst case scenario, where all nodes have the same capability and where there are no ways to use mobile sinks or add some powerful nodes as gateways. Thus, our models perform load balancing and maximize network lifetime with no need for special node capabilities such as mobility or heterogeneity or pre‐deployment, which would greatly simplify the problem. We show that the proposed models not only increase network lifetime but also minimize latency between sensor nodes. Numerical results show that energy consumption can be effectively balanced among sensor nodes, and stability period can be greatly extended using our models.  相似文献   

10.
In wireless sensor networks (WSNs), clustering has been shown to be an efficient technique to improve scalability and network lifetime. In clustered networks, clustering creates unequal load distribution among cluster heads (CHs) and cluster member (CM) nodes. As a result, the entire network is subject to premature death because of the deficient active nodes within the network. In this paper, we present clustering‐based routing algorithms that can balance out the trade‐off between load distribution and network lifetime “green cluster‐based routing scheme.” This paper proposes a new energy‐aware green cluster‐based routing algorithm to preventing premature death of large‐scale dense WSNs. To deal with the uncertainty present in network information, a fuzzy rule‐based node classification model is proposed for clustering. Its primary benefits are flexibility in selecting effective CHs, reliability in distributing CHs overload among the other nodes, and reducing communication overhead and cluster formation time in highly dense areas. In addition, we propose a routing scheme that balances the load among sensors. The proposed scheme is evaluated through simulations to compare our scheme with the existing algorithms available in the literature. The numerical results show the relevance and improved efficiency of our scheme.  相似文献   

11.
在无线传感器网络中,分簇型路由在路由协议中占据重要的地位,该协议方便拓扑结构管理,能源利用率高,数据融合简单。文章从簇头生成、簇形成和簇路由3个角度对典型的分簇路由算法LEACH,HEED,EEUC,PEGASIS进行了系统描述,从网络生命周期和节点存活数量等方面,对比了其优缺点,结合该领域的研究现状,指出了未来研究的方向。  相似文献   

12.
提出一种新的基于网络编码的负载均衡路由量度CRM-LB(coding-aware routing metric with load balancing),CRM-LB在CRM(coding-aware routing metric)的基础上增加了对路径p上所有节点通信密集程度与网络拥塞程度的考虑。进一步提出了基于CRM-LB的无线mesh网络多播路由CLR(coding and load-balancing routing)。该协议可以增加网络编码机会,同时考虑到网络中的负载均衡。通过性能分析和仿真实验表明,该协议在提高多播吞吐量的前提下,不仅能更好地支持网络编码,而且网络负载基本均衡。  相似文献   

13.
In the last decade, underwater wireless sensor networks have been widely studied because of their peculiar aspects that distinguish them from common terrestrial wireless networks. Their applications range from environmental monitoring to military defense. The definition of efficient routing protocols in underwater sensor networks is a challenging topic of research because of the intrinsic characteristics of these networks, such as the need of handling the node mobility and the difficulty in balancing the energy consumed by the nodes. Depth‐based routing protocol is an opportunistic routing protocol for underwater sensor networks, which provides good performance both under high and low node mobility scenarios. The main contribution of our work is presenting a novel simulator for studying depth‐based routing protocol and its variants as well as novel routing protocols. Our simulator is based on AquaSim–Next Generation, which is a specialized tool for studying underwater networks. With our work, we improve the state of the art of underwater routing protocol simulators by implementing, among other features, a detailed cross‐layer communication and an accurate model of the operational modes of acoustic modem and their energy consumption. The simulator is open source and freely downloadable. Moreover, we propose a novel and completely distributed routing protocol, named residual energy–depth‐based routing. It takes into account the residual energy at the nodes' batteries to select the forwarder nodes and improve the network lifetime by providing a more uniform energy consumption among them. We compare its performance with that of depth‐based routing protocol and a receiver‐based routing protocol implementing a probabilistic opportunistic forwarding scheme.  相似文献   

14.
基于传输路径质量的无线mesh网络可靠多播   总被引:1,自引:0,他引:1  
提出了一种可靠多播网(RM)模型,探讨了无线链路和节点可靠性对多播路径选择的影响。首先,建立了无线链路的相关性和多播路径的可靠性模型,并提出了多播传输的可靠性判据;同时,结合首树算法和多路径树算法提出了构造可靠多播网的算法。可靠多播网具有并行的多播路径,通过在多播源节点和目的节点之间选择多播链路和节点构成了可靠的多播路径,提供了多播路径的"负荷分担"和"热备份"功能,从而支持了多播业务可靠性。  相似文献   

15.
刘江涛 《光电子.激光》2010,(11):1653-1656
分析了基于低功耗自适应分簇(LEACH)路由协议的无线传感网络(WSN)在不同拓扑形状下的生命周期,并改进了长方形拓扑形状的路由协议。进而针对WSN在某些场合能量有限、易受干扰和安全性差等缺点,在长方形区域中引入分布式光纤传感结构。将传感光纤铺设在环境复杂和外界电磁波干扰大的监测区域,从而提高整个传感网络的生命周期和可靠性。理论分析和仿真结果表明,改进的拓扑和协议在提高可靠性的同时,有效地延长了光WSN的生存时间,性能优于传统LEACH协议。  相似文献   

16.
Mesh‐based multicast routing protocols for mobile ad hoc networks (MANETs) build multiple paths from senders to receivers to deliver packets even in the presence of links breaking. This redundancy results in high reliability/robustness but may significantly increase packet overhead. This paper proposes a mesh‐based multicast protocol, called centered protocol for unified multicasting through announcements (CPUMA), that achieves comparable reliability as existing mesh‐based multicast protocols, however, with significantly much less data overhead. In CPUMA, a distributed core‐selection and maintenance algorithm is used to find the source‐centric center of a shared mesh. We leverage data packets to center the core of each multicast group shared mesh instead of using GPS or any pre‐assignment of cores to groups (the case of existing protocols). The proposed centering scheme allows reducing data packet overhead and creating forwarding paths toward the nearest mesh member instead of the core to reduce latency. We show, via simulations, that CPUMA outperforms existing multicast protocols in terms of data packet overhead, and latency while maintaining a constant or better packet delivery ratio, at the cost of a small increase in control overhead in a few scenarios. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Due to inherent issue of energy limitation in sensor nodes, the energy conservation is the primary concern for large‐scale wireless sensor networks. Cluster‐based routing has been found to be an effective mechanism to reduce the energy consumption of sensor nodes. In clustered wireless sensor networks, the network is divided into a set of clusters; each cluster has a coordinator, called cluster head (CH). Each node of a cluster transmits its collected information to its CH that in turn aggregates the received information and sends it to the base station directly or via other CHs. In multihop communication, the CHs closer to the base station are burdened with high relay load; as a result, their energy depletes much faster as compared with other CHs. This problem is termed as the hot spot problem. In this paper, a distributed fuzzy logic‐based unequal clustering approach and routing algorithm (DFCR) is proposed to solve this problem. Based on the cluster design, a multihop routing algorithm is also proposed, which is both energy efficient and energy balancing. The simulation results reinforce the efficiency of the proposed DFCR algorithm over the state‐of‐the‐art algorithms, ie, energy‐aware fuzzy approach to unequal clustering, energy‐aware distributed clustering, and energy‐aware routing algorithm, in terms of different performance parameters like energy efficiency and network lifetime.  相似文献   

18.
Underwater Acoustic Sensor Networks (UW‐ASN) are provisioned with limited bandwidth, long variable propagation delay, limited available energy, highly unreliable acoustic channels, and random node mobility. Consequently, efficient data routing between source destination pair requires UW‐ASN to apply a technology different than terrestrial networks. For the past few years researchers have proposed many robust and efficient routing protocols for UW‐ASN, thus reviewing the challenges posed by stringent underwater environment. These protocols can be broadly categorized into localization based and localization‐free protocols. This paper presents a critical review of beacon‐based localization‐free routing protocols and suggest possible solution to improve the working of studied beacon based protocols. This work categorizes beacon based protocols into hop‐by‐hop, end‐to‐end, single, and multiple parameters based forwarding protocols. This categorization will help to differentiate and identify the requirements for the development of new beacon‐based protocols. Finally, this paper presents performance comparison based on simulation results and outlines the research gap and future directions.  相似文献   

19.
Recently, underwater wireless sensor networks (UWSNs) have attracted much research attention to support various applications for pollution monitoring, tsunami warnings, offshore exploration, tactical surveillance, etc. However, because of the peculiar characteristics of UWSNs, designing communication protocols for UWSNs is a challenging task. Particularly, designing a routing protocol is of the most importance for successful data transmissions between sensors and the sink. In this paper, we propose a reliable and energy‐efficient routing protocol, named R‐ERP2R (Reliable Energy‐efficient Routing Protocol based on physical distance and residual energy). The main idea behind R‐ERP2R is to utilize physical distance as a routing metric and to balance energy consumption among sensors. Furthermore, during the selection of forwarding nodes, link quality towards the forwarding nodes is also considered to provide reliability and the residual energy of the forwarding nodes to prolong network lifetime. Using the NS‐2 simulator, R‐ERP2R is compared against a well‐known routing protocol (i.e. depth‐based routing) in terms of network lifetime, energy consumption, end‐to‐end delay and delivery ratio. The simulation results proved that R‐ERP2R performs better in UWSNs.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
~~An energy efficient clustering routing algorithm for wireless sensor networks1. Mainwaring A, Polastre J, Szewczyk R, et al. Wireless sensor networks for habitat monitoring. Proceedings of the ACM International Workshop on Wireless Sensor Networks and A…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号