首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Abstract  

A novel micro-micro/mesoporous silicoaluminophosphate ZSM-5-SAPO-5/MCM-41 (define as MZS-5) composite material with regular spherical morphology was synthesized through a novel process of the self-assembly of CTAB surfactant micelles with silica-alumina source which originated from the alkaline treatment of ZSM-5 zeolite. The physical properties of the MZS-5 composite material were characterized by XRD, FT-IR, Nitrogen adsorption–desorption, SEM and Py-FTIR techniques. Catalytic tests showed that the MZS-5 composite catalyst exhibited higher catalytic activity compared with the conventional microporous ZSM-5, SAPO-5 zeolite and mesoporous Al-MCM-41 molecular sieve for catalytic cracking of 1,3,5-triisopropylbenzene (TIPB). The remarkable catalytic reactivity of TIPB molecules was mainly attributed to the presence of the hierarchical zeolite structure. In the MZS-5 structure, the mesopores provided pathways for transportation of larger molecules and the microporous ZSM-5 and SAPO-5 zeolite provided acidic sites for catalytic activity.  相似文献   

2.
A zeolite composite Y/Beta with core-shell structure was synthesized by adding tetraethylammonium bromide (TEABr) exchanged NaY zeolite into the pre-reacted mixture used to prepare Beta zeolite. The composite was characterized by XRD, N2 adsorption, SEM, and FTIR spectra of pyridine. The results show that the composite is composed of a core zeolite Y and a shell of intergrown zeolite Beta crystals, representing dual microporous structures of both Y and Beta zeolites and a new mesoporous structure. The composite has a high activity in n-octane catalytic cracking because of the formation of intergrowths and the change of acidity due to the distorted interface and surface defects.  相似文献   

3.
Mesoporous zeolite single-crystal catalysts exhibit the hitherto most pronounced activity enhancement over conventional zeolite catalysts in slurry-phase catalytic cracking and isomerization of n-hexadecane. This improved performance of both pure and Pt-loaded mesoporous MFI single crystals is attributed to enhanced mass transport via the extended non-crystallographic intracrystalline mesopores to and from active sites located inside the zeolite micropores.  相似文献   

4.
A series of Y/Al-SBA-15 composites were prepared by a two-step synthesis procedure in mild acidic medium. The materials were characterized by powder X-ray diffraction (XRD), N2 sorption isotherms and TEM techniques. Catalytic cracking of cumene and 1,3,5-tri-isopropylbenzene was carried out as the probing reactions on these composites. The XRD results showed that these materials are composites of Al-SBA-15 and Y zeolite. N2 sorption isotherms and TEM displayed that these composites were abundant in micropores and mesopores. At the same time, the mesopores may communicate with the␣micropores in some domains, which may result in the high catalytic activities of Y/Al-SBA-15 composites for the␣cracking of both small-molecule (cumene) and large-molecule (1,3,5-tri-isopropylbenzene) hydrocarbons. The existence of mesopores may also make the acid sites easily accessible for reactants. Catalysts of W–Ni supported on Y/Al-SBA-15 and modified Y zeolites with mesopores were prepared by impregnation method, and the hydrocracking of heavy oil was performed on these catalysts. The catalyst using zeolite Y/mesoporous Al-SBA-15 composites as support gave higher yield of diesel compared to the catalysts using modified zeolite Y as support. In addition, the higher aromatics potential of heavy naphtha and the significantly lower BMCI (U.S. Bureau of Correlation Index) of tail oil revealed Y/Al-SBA-15 composite catalyst possessed integrated performance in the hydrocracking of heavy oil. These results proved that the combination of Y zeolites and mesoporous Al-SBA-15 plays a great role in improving the performance of catalysts for hydrocracking heavy oils.  相似文献   

5.
ZSM-5 zeolite has been hydrothermally synthesized in-situ on the external surface of calcined kaolinite in the presence of n-butylamine. This supported zeolite was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy and N2 adsorption. Several synthesis variables were systematically investigated, including SiO2 to Al2O3 ratio, pH, crystallization time, and crystallization temperature. After mixing the ZSM-5 with a Fluid Catalytic Cracking (FCC) catalyst, catalytic performance was evaluated by cracking vacuum gas oil (VGO) in a micro-fixed bed reactor. ZSM-5 addition was favorable for the production of light olefins by catalytic cracking of VGO.  相似文献   

6.
Catalytic composites of Y-zeolite-amorphous silica–alumina (ASA) were prepared by four different methods to enhance pre-cracking and cracking of triisopropylbenzene (TIPB). TIPB cracking on composite catalysts were compared with a conventionally prepared catalyst. The samples were characterized by FESEM, XRD, N2-adsorption and NH3-TPD. The catalysts performance was evaluated by triisopropylbenzene cracking at 350 ̊C in a fixed bed reactor. The coke content of the catalysts was measured by TPO. Compared to the conventional catalyst, significantly deeper cracking to benzene of about 117% higher, up to 62% lower amount of coke, and lower deactivation rate are observed for the composite catalysts.  相似文献   

7.
Composite materials containing Raney Ni and Cu‐ZSM‐5 are highly active catalysts for the selective catalytic reduction (SCR) of NO by NH3. Their catalytic properties were studied with particular attention to the influence of moisture and SO2 in the feed, and to effects of catalyst shaping operations. Composite materials (16–20 wt‐% zeolite) were prepared by mixing the components, with different degree of segregation in the resulting pressed particles, or by growing ZSM‐5 crystallites on the surface of leached Raney Ni, which were then exchanged with Cu ions. Catalytic tests were performed with 1000 ppm NO, 1000 ppm NH3, 2 % O2 in He, at 3–6.5 · 105 h–1 (related to zeolite component). With physical mixtures, the catalytic behaviour strongly depended on the mixing strategy, particles containing both Ni and zeolite being inferior to mixed Ni‐only and zeolite‐only particles. The SCR activity was promoted by 2 % H2O in the feed, SO2 (200 ppm) was a moderate poison at low temperatures, but indifferent or slightly promoting at high temperatures. A catalyst prepared from ZSM‐5 grown on Raney Ni, which was ranked intermediate in dry feed, was promoted to excellent performance in H2O and SO2 containing feed at T > 700 K and was stable for 38 h at 845 K. The results suggest that SCR catalysts containing highly active zeolites should be produced avoiding shaping operations e.g. by use of zeolite crystallites grown on wire packings.  相似文献   

8.
ZSM5 washcoated monoliths with zeolite loading ranging from 10 to 60 wt % were prepared, characterized, and examined for disproportionation of toluene. Toluene conversion increased with temperature and W/FAo but decreased with washcoat thickness. The selectivity of the most desirable isomer (p‐xylene) increased with a decrease in temperature, W/FAo and washcoat thickness. The high selectivity to p‐xylene indicates that the initially formed para isomer is easily removed from the zeolite pores in the thin washcoat to the bulk gas phase preventing further isomerization of the primary product. A reaction scheme has been proposed for this reaction and the kinetic parameters determined for the 10 wt % ZSM5 monolith. A one‐dimensional reactor model was developed to predict the performance of the reactor for disproportionation of toluene. The model equations were coupled with a module to calculate the concentration profile in the washcoat by considering the effect of diffusion and reaction. © 2011 American Institute of Chemical Engineers AIChE J, 00: 000–000, 2011  相似文献   

9.
以微孔HY浆液为母液,合成了介-微孔复合分子筛HY/MCM-41。通过XRD、BET和NH3-TPD等手段对复合分子筛进行表征,并考察其水热稳定性。结果表明,复合分子筛同时具有中孔分子筛MCM-41和微孔HY型沸石的特点,与纯MCM-41分子筛相比,酸性明显增强,水热稳定性提高。利用一段串联加氢裂化工艺,考察了复合分子筛的催化性能。200 mL固定床加氢装置评价结果表明,在控制原料>350 ℃馏分油转化率为75%的条件下,加氢裂化生成油C5+液收98.51%,最大量柴油馏分[(140~370) ℃]收率69.09%,<370 ℃中馏分油选择性80.5%,能满足工业装置最大量生产柴油的需要。  相似文献   

10.
ZSM-5 zeolites were synthesized by an in situ hydrothermal crystallization method on kaolin microspheres from an organic template-free solution. The as-synthesized samples were characterized by using X-ray diffraction, scanning electron microscopy, Fourier Transform Infrared spectrometry, N2 adsorption and desorption, and Temperature Programmed Desorption. The results showed that small-sized ZSM-5 crystallites with less than 1 micron in diameter were effectively formed on kaolin microspheres. The synthesized products indicated high hydrothermal stability and strong acidity. By mixing the H-type ZSM-5/CMK composite with a Fluid Catalytic Cracking base catalyst, the performance of the catalyst is then evaluated. The results of catalytic performance evaluation showed that with the addition of ZSM-5/CKM, it favored the production of light olefins such as propylene and butylenes by catalytic cracking of vacuum gas oil.  相似文献   

11.
We have performed a direct comparison of n‐hexane cracking catalysed by a zeolite (H‐ZSM‐5) and a heteropoly acid (phosphotungstic acid, HPW). This comparison was examined by employing density functional theory, including dispersion energy, M06‐L, for the purpose of understanding these two catalysts for this industrially important reaction. The predicted adsorption energies of hexane are ?21.4 and ?6.8 kcal/mol for H‐ZSM‐5 and HPW, respectively. The protolytic cracking mechanism is proposed to proceed via the first step of the C–C activation and is found to be the rate‐determining step with activation energies of 42.8 and 41.4 kcal/mol for H‐ZSM‐5 and HPW, respectively. We also discuss the advantages and disadvantages of both catalysts for hydrocarbon cracking and give a perspective of utilising cutting‐edge molecular design for a tailor‐made hybrid catalyst. © 2011 Canadian Society for Chemical Engineering  相似文献   

12.
A facile synthesis method for mesoporous MFI zeolite (MMZ) has been developed. MFI zeolite was synthesized by a dry gel conversion in the presence of ZnO nanoparticles with a size of 20 nm. The as-synthesized MFI zeolite included crystalline layered zinc silicate and already possessed 5–15 nm mesopores. After calcination, MMZ/zinc silicate composite was treated with hydrochloric acid to remove unreacted ZnO particles. The micropore (1–2 nm) volume was increased after the HCl treatment, suggesting that ZnO nanoparticles (1–2 nm) remained during crystallization as well as zinc silicate. The catalytic activity of MMZ on 1,3,5-trimethylbenzene (TMB) cracking was compared with that of conventional MFI nanocrystals with a size of 80–100 nm. The conversion of TMB on MMZ was much higher than that on the MFI nanocrystals even though crystal size of MMZ is larger than the conventional MFI zeolite. These results suggest that acid sites on the internal surface of mesopores of MMZ contribute to the high conversion of TMB.  相似文献   

13.
Hydroisomerization of meta‐xylene was carried out using catalysts containing 0.15–0.60 wt% Pt on H‐ZSM‐5 zeolite, in a pulsed microreactor system connected to a gas chromatograph at a flow of hydrogen of 20 cm3 min−1 and temperatures of 275–500 °C. Increasing temperature, increased isomerization with low rates. Increasing Pt content of the catalyst, decreased hydrodealkylation considerably via masking strong acid sites as revealed by temperature programmed desorption of ammonia measurements. Formation of trimethylbenzenes was inhibited by Pt incorporation in the H‐ZSM‐5 zeolite. The activation energies obtained for meta‐xylene hydroisomerization were relatively low (24.4–61.6 kJ mol−1) on all catalysts under study. Para‐xylene yields in the xylenes mixture of product relative to the corresponding thermodynamic equilibrium values amount to about 0.8–0.9 at temperatures of 400–500 °C but were lower at lower temperatures. © 1999 Society of Chemical Industry  相似文献   

14.
Al-MSU-S mesoporous molecular sieve catalysts with Al contents ranging from 2.5 to 50 mol% have been prepared from “zeolite seed” solutions and C16 TMABr templates. Hexagonal mesoporous structures are formed that exhibit significantly higher amounts of tetrahedrally coordinated Al than analogous Al-MCM-41 catalysts. The Al-MSU-S catalysts also possess smaller pores than corresponding Al-MCM-41 materials. Catalytic cumene cracking activity is very high over the low Al content materials (2.5 mol%), approaching that of zeolite ZSM-5, but the catalytic activity decreases with increasing Al. As the Al content is increased, the Al atoms remain tetrahedrally coordinated but become less accessible to the cumene reagent. This and knowledge of zeolite synthesis suggest the formation of zeolite seeds other than the large pore LZY, such as the small pore LTA structure.  相似文献   

15.
A chemical kinetic model for i‐butane and n‐butane catalytic cracking over synthesized HZSM‐5 zeolite, with SiO2/Al2O3 = 484, and in a plug flow reactor under various operating conditions, has been developed. To estimate the kinetic parameters of catalytic cracking reactions of i‐butane and n‐butane, a lump kinetic model consisting of six reaction steps and five lumped components is proposed. This kinetic model is based on mechanistic aspects of catalytic cracking of paraffins into olefins. Furthermore, our model takes into account the effects of both protolytic and bimolecular mechanisms. The Levenberg–Marquardt algorithm was used to estimate kinetic parameters. Results from statistical F‐tests indicate that the kinetic models and the proposed model predictions are in satisfactory agreement with the experimental data obtained for both paraffin reactants. © 2011 American Institute of Chemical Engineers AIChE J, 58: 2456–2465, 2012  相似文献   

16.
Composite membranes were prepared by incorporating ZSM‐5 zeolite into poly(ether‐block‐amide) (PEBA) membranes. These composite membranes were characterized by TGA, XRD, and SEM. The results showed that the zeolite could distribute well in the polymer matrix. And when the zeolite content reached 10%, the agglomeration of zeolite in the membranes was found. The composite membranes were used to the pervaporative separation of n‐butanol aqueous solution. The effect of zeolite content on pervaporation performance was investigated. With the contribution of preferential adsorption and diffusion of n‐butanol in the polymer matrix and zeolite channel, the 5% ZSM‐5‐PEBA membrane showed enhanced selectivity and flux. The effects of liquid temperature and concentration on separation performance were also investigated. All the composite membranes demonstrated increasing separation factor and permeation flux with increasing temperature and concentration. Incorporation of ZSM‐5 could decrease the activation energy of n‐butanol flux of the composite membrane. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
The high performance of hybrid catalysts in the selective deep catalytic cracking of n-hexane and n-heptane – used herein as model molecules for petroleum naphthas – is due to the pore continuum effect created by the close connection between the micropores of the acidified silicalite crystallites and the mesopores of the cocatalyst particles, located in fixed positions within a rigid matrix. The resulting enhanced conversion over the micro–meso hybrid catalyst is obtained regardless of the surface composition of the mesoporous cocatalyst or the molecular nature of the feed. However, it disappears when the two catalyst components are both mesoporous materials, i.e. in the case of a meso–meso hybrid catalyst. The main active component of the mesoporous cocatalyst, molybdenum oxide supported on silica–alumina, shows surface acidity of both nature (Bronsted and Lewis). Cerium oxide incorporated as dopant, has as main catalytic effect to increase the selectivity to light olefins, while the production of aromatics significantly decreases. However, when the ratio of [Ce]/[Mo] molar concentrations is higher than 0.8, theyield of product BTX aromatics rapidly increase at the expenses of that of light olefins. On the other hand, Ce loading onto the microporous silicalite or ZSM5 zeolite results in the same catalytic behavior as with the cerium-doped cocatalyst.  相似文献   

18.
Novel hierachically porous material Beta-MCM-48 was successfully synthesized from Beta zeolite seeds by two-step hydrothermal crystallization method using Cetyltrimethylammonium Bromide as the mesostructure directing agent. Beta-MCM-48 composite synthesized at the optimization conditions possessed Beta microporous structure and cubic Ia $ \overline{ 3} $ 3 ¯ d mesoporous structure simultaneously. Meanwhile, the acidity of Beta-MCM-48 was similar to Beta zeolite and higher than MCM-48 mesoporous material. A series of Al2O3-Beta-MCM-48 supported NiMo catalysts with different Beta-MCM-48 contents were prepared by the incipient-wetness impregnation method. The catalytic performances were evaluated using DaQing Fluid Catalytic Cracking diesel as feedstock in a high pressure microreactor. Hydrodesulfurization results indicated that NiMo/Al2O3-Beta-MCM-48 catalyst exhibited better activities than that of NiMo/Al2O3 traditional catalyst. NiMo/Al2O3-Beta-MCM-48 catalyst obtained the highest activity as the Beta-MCM-48 content in the support was 20 wt %, and the corresponding sulfur content of the hydrotreated product reached to 23.02 μg g?1.  相似文献   

19.
《Applied catalysis》1988,36(2):307-323
Catalytic cracking catalysts containing hydrothermally stabilized, acid treated (USE) Y zeolites were prepared and tested for the conversion of West Texas Heavy Gas Oil. The cracking catalyst zeolite contents were equivalent; however, the amounts of zeolite non-framework aluminium were decreased from catalyst to catalyst. Steam deactivated cracking catalyst activity was highest when catalyst zeolite non-framework aluminium content was highest, as was the selectivity to gasoline. Zeolites which have low amounts of non-framework aluminium also have maximum free mesopore volumes. Cracking catalysts prepared from such low-aluminium zeolites are not active for heavy oil cracking and high boiling hydrocarbons plug the mesopores causing high coke yields.  相似文献   

20.
The cracking activity of a fluid catalytic cracking (FCC) catalyst containing novel zeolite Y nanoparticles fabricated using mesoporous silica (average particle size of 150 nm) was examined and compared with the performance of other catalysts. The activity experiments were carried out in a fluidized bench-scale batch riser simulator reactor. The bulky probing compound of 1,3,5-triisopropylbenzene (TIPB) was cracked to lighter compounds over a catalyst containing 25% of the developed zeolite. The synthesized sodium-type zeolite nanoparticles were subjected to two cycles of ion-exchange treatment using ammonium sulfate and lanthanum chloride and then to calcination. To investigate the effects of particle size on the activity, three additional catalysts were prepared with the mean particle size of the supported zeolites ranging from 450 to 1800 nm. The preparation of the FCC catalysts was conducted by mixing the highly aqueous dispersed zeolite Y nanoparticles with colloidal silica–alumina as a matrix and silica sol as a binder. The results of the catalytic cracking of TIPB demonstrated the significant effect of the size reduction of the synthesized zeolite Y nanoparticles on the catalytic performance of the catalyst. The FCC catalyst that contained zeolite Y nanoparticles (150 nm) showed superior conversion and selectivity percentages for the main products. The results of this study have a direct implication on the preparation of colloidal catalysts containing zeolite Y nanoparticles, which form stable emulsion with petroleum products. These emulsions can be utilized for slurry and ebullated bed reactors in heavy oil upgrading applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号