首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method was developed to recover the copper and iron from Printed Circuit Boards (PCB) manufacturing generated spent acid etching solution and waste sludge with ultrasonic energy at laboratory scale. It demonstrated that copper-containing PCB spent etching solution could be utilized as a leaching solution to leach copper from copper contained PCB waste sludge. It also indicated that lime could be used as an alkaline precipitating agent in this method to precipitate iron from the mixture of acidic PCB spent etching solution and waste sludge. This method provided an effective technique for the recovery of copper and iron through simultaneous use of PCB spent acid solution and waste sludge. The leaching rates of copper and iron enhanced with ultrasound energy were reached at 93.76% and 2.07% respectively and effectively separated copper from iron. Followed by applying lime to precipitate copper from the mixture of leachate and rinsing water produced by the copper and iron separation, about 99.99% and 1.29% of soluble copper and calcium were settled as the solids respectively. Furthermore the settled copper could be made as commercial rate copper. The process performance parameters studied were pH, ultrasonic power, and temperature. This method provided a simple and reliable technique to recover copper and iron from waste streams generated by PCB manufacturing, and would significantly reduce the cost of chemicals used in the recovery.  相似文献   

2.
Solidification/stabilization (S/S) of hazardous iron oxide coated cement (IOCC) spent adsorbent containing arsenic (As(III)) was investigated in the present study. Cement and lime-based S/S effectiveness was evaluated by performing semi-dynamic leach tests. The S/S effectiveness was evaluated by measuring effective diffusion coefficients (D(e)) and leachability indices (LX). It was found that though cement or lime alone were efficient in preventing arsenic leaching (D(e) being in range of 10(-10) to 10(-12) for all the matrices) from the solidified matrices, the best combination for arsenic containment in the matrix was obtained when a mixture of cement and lime was used. The LX values for all the matrices were higher than 10, suggesting that the S/S treated arsenic sludge are acceptable for "controlled utilization". Calcite formation along with precipitation and conversion into non-soluble forms (calcium arsenite, calcium hydrogen arsenate hydrates, calcium hydrogen arsenates, etc.) were found to be the responsible mechanism for low leaching of arsenic from the solidified/stabilized samples. A linear relationship between cumulative fraction (CFR) of arsenic leached and square root of leach time (R(2) ranging from 0.90 to 0.94) suggested that the diffusion is the responsible mechanism for arsenic leaching. Thus, cement and lime show effective containment of the As(III) within the matrix thus indicating S/S by cement and lime, which is also a low-cost option, as a suitable management option for the toxic As(III) sludge.  相似文献   

3.
A few researchers have reported on work concerning bioleaching of heavy-metal-contaminated soil using Acidithiobacillus ferrooxidans, since this acidophile is sensitive to dissolved low molecular weight (LMW) organic acids. Iron oxidation by A. ferrooxidans R2 as well as growth on ferrous iron was inhibited by a variety of dissolved LMW organic acids. Growth experiments with ferrous iron as an oxidant showed that the inhibition capability sequence was formic acid>acetic acid>propionic acid>oxalic acid>malic acid>citric acid. The concentrations that R2 might tolerate were formic acid 0.1mmolL(-1) (2mmolkg(-1)soil), acetic and propionic acids 0.4mmolL(-1) (8mmolkg(-1)soil), oxalic acid 2.0mmolL(-1) (40mmolkg(-1)soil), malic acid 20mmolL(-1) (400mmolkg(-1)soil), citric acid 40mmolL(-1) (800mmolkg(-1)soil), respectively. Although R2 was sensitive to organic acids, the concentrations of LMW organic acids in the contaminated soils were rather lower than the tolerable levels. Hence, it is feasible that R2 might be used for bioleaching of soils contaminated with metals or metals coupled with organic compounds because of the higher concentrations of LMW organic acids to which R2 is tolerant.  相似文献   

4.
To evaluate the influences of sewage sludge-derived organic matters on metal sorption and on the resultant sludge loading estimates, a batch experiment was conducted to compare the sorption of Ni, Cu and Pb in sewage sludge filtrates (1:20 sewage sludge to water) on eight soils and the adsorption of metals in a reference solution which had the same matrix as the sewage sludge filtrate except dissolved organic material (henceforth referred to as reference solution). Metal sorption could be well fitted by linear isotherm and the dissolved organic matter in sludge significantly depressed the sorption (p<0.01). The main factor controlling sorption of Ni on different soils was dominated by soil cation exchange capacity (CEC) and sorption of Cu and Pb was by soil organic matter (SOM). The parameters obtained from the sorption isotherm equations were then used to estimate sludge loadings into the soils. When the sorption parameters derived from the reference solution were used for calculation, that is the effect of dissolved organic matter was not considered, the calculated safe application rates are approximately 47.8, 51.4, 34.2, 31.3, 21.7, 46.3, 187.1 and 27.6 t-sludge/ha for the Beijing, Jiangxi, Xiamen, Jilin, Guangdong, Wuhan, Gansu and Xinjiang soils, respectively. However, when the sorption parameters derived from the dissolved organo-metallic complexes are used for calculation, the corresponding application rates are reduced to approximately 6.0, 3.4, 1.9, 10.0, 6.3, 3.6, 7.3 and 3.5 t-sludge/ha, respectively. By this study we can get a conclusion that the effect of sewage sludge derived dissolved organic matter on heavy metal sorption and soil properties should be considered in the course of regulating the safe application rates of sewage sludge to soil.  相似文献   

5.
A series of experiments were conducted to stabilize the inorganic and organic pollutants in a foundry sludge from a cast iron activity using Portland cement as binder and three different types of additives, organophilic bentonite, lime and coal fly ash. Ecotoxicological and chemical behavior of stabilized mixes of foundry sludge were analyzed to assess the feasibility to immobilize both types of contaminants, all determined on the basis of compliance leaching tests. The incorporation of lime reduces the ecotoxicity of stabilized mixes and enhances stabilization of organic pollutants obtaining better results when a 50% of cement is replaced by lime. However, the alkalinity of lime increases slightly the leached zinc up to concentrations above the limit set under neutral conditions by the European regulations. The addition of organophilic bentonite and coal fly ash can immobilize the phenolic compounds but are inefficient to reduce the ecotoxicity and mobility of zinc of final products.  相似文献   

6.
Studies on the development of an arsenic remediation approach using Fenton's reagent (H2O2 and Fe(II)) followed by passage through zero valent iron is reported. The efficiency of the process was investigated under various operating conditions. Potable municipal water and ground water samples spiked with arsenic(III) and (V) were used in the investigations. The arsenic content was determined by ICP-QMS. A HPLC-ICPMS procedure was used for the speciation and determination of both As(III) and (V) in the processed samples, to study the effectiveness of the oxidation step and the subsequent removal of the arsenic.The optimisation studies indicate that addition of 100 microl of H2O2 and 100 mg of Fe(II) (as ferrous ammonium sulphate) per litre of water for initial treatment followed by passing through zero valent iron, after a reaction time of 10 min, is capable of removing arsenic to lower than the US Environmental Protection Agency (EPA) guideline value of 10 microg/l, from a starting concentration of 2 mg/l of As(III). Using these suggested amounts, several experiments were carried out at different concentrations of As(III). Residual hydrogen peroxide in the processed samples can be eliminated by subsequent chlorination, making the water, thus, processed, suitable for drinking purposes. This approach is simple and cost effective for use at community levels.  相似文献   

7.
A scanning mobility particle sizer has been used to quantify residual particle number and mass concentrations generated by ultrasonic nebulization of deionized (DI) water stored in a variety of bottles. High variability of residual particles was found not only between different bottle types but also between different bottles of the same type. Degradation of the water quality, quantified as increased residual mass and number concentrations as a function of time, occurred to varying degrees for water stored in different bottle types. Overall, glass bottles showed the highest residual particle concentrations and exhibited the poorest stability over time. After a storage period of 3 weeks, DI water stored in Pyrex bottles showed average increases in particle mass and number densities in the aerosol of over 250% and 60%, respectively. Total dissolved impurity levels in the water increased from 110 to 290 ng mL(-1) over the 3-week period. It is hypothesized that leaching from the bottle walls increases impurity levels in the water over time. Leaching was observed for both glass and polymer bottles. Contrary to this trend, residual particle concentrations from deionized water stored in Teflon bottles showed a net decrease during the measurement period. With respect to absolute residual particle concentrations and storage stability, a Teflon bottle yielded the best performance. Total residual particle mass and number densities for Teflon were less than a factor of 15% and 1%, respectively, as compared to residual particle levels observed for the Pyrex bottle. Absolute dissolved impurity levels in the water for the Teflon bottle decreased from 7.8 to 3.7 ng mL(-1) over the 4-week period.  相似文献   

8.
Ferrous iron, Na(2)S(2)O(4), and a mixture of Fe(II) and Na(2)S(2)O(4) (4:1 mol/mol) were tested for their effectiveness for decreasing resin-extractable Cr(VI) in alkaline Cr(VI)-spiked soils. The results indicated that adding those reductants greatly decreased the amount of resin-extractable Cr(VI) when the application rate of reductants equaled the number of equivalents of dichromate added to the Cr(VI)-spiked soils. This was mainly as a result of the Cr(VI) reduction into Cr(III), as supported by the XANES spectra. Among the tested reductants, a mixture of Fe(II) and Na(2)S(2)O(4) was the most effective to decrease resin-extractable Cr(VI). The extent to which resin-extractable Cr(VI) and soil pH were decreased was affected by the pH of the reductants. Among the tested reductants at various pH, FeSO(4) at pH below 1 was the most effective in decreasing resin-extractable Cr(VI) in alkaline soils. However, the soil pH was the most decreased as well. On the other hand, the mixtures of ferrous iron and dithionite at a wide range of pH were all efficient (>70% efficiency) in decreasing resin-extractable Cr(VI). Moreover, the extent of the decrease in soil pH was much smaller than that by FeSO(4) (pH<1) alone, and thus the possibility of the Cr(III) hazard can be avoided.  相似文献   

9.
Though the process of composting features a high microbiological activity, its potential to methylate metals and metalloids has been little investigated so far in spite of the high impact of this process on metal(loid) toxicity and mobility. Here, we studied the biotransformation of arsenic, tellurium, antimony, tin and germanium during composting. Time resolved investigation revealed a highly dynamic process during self-heated composting with markedly differing time patterns for arsenic and tellurium species. Extraordinary high concentrations of up to 150 mg kg(-1) methylated arsenic species as well as conversion rates up to 50% for arsenic and 5% for tellurium were observed. In contrast, little to no conversion was observed for antimony, tin and germanium. In addition to experiments with metal(loid) salts, composting of arsenic hyperaccumulating ferns Pteris vittata and P. cretica grown on As-amended soils was studied. Arsenic accumulated in the fronds was efficiently methylated resulting in up to 8 mg kg(-1) methylated arsenic species. Overall, these studies indicate that metal(loid)s can undergo intensive biomethylation during composting. Due to the high mobility of methylated species this process needs to be considered in organic waste treatment of metal(loid) contaminated waste materials.  相似文献   

10.
The pre-treatment of olive mill effluents (OME) by means of coagulation-flocculation coupling various inorganic materials and organic poly-electrolytes was investigated. Tests were conducted with two different OME with chemical oxygen demand (COD) contents of 61.1 and 29.3 g/L, total suspended solids (TSS) of 36.7 and 52.7 g/L and total phenolic contents (TP) of 3.5 and 2.5 g/L, respectively. Inorganic materials such as lime, iron, magnesium and aluminum as well as four cationic and two anionic commercial poly-electrolytes were employed either alone or in various combinations and screened with respect to their efficiency in terms of TSS, TP and COD removal, the amount of sludge produced and the phytotoxicity of the resulting liquid to lettuce seeds. Coupling lime or ferrous sulphate (in the range of several g/L) with cationic poly-electrolytes (in the range of 200-300 mg/L) led to quantitative TSS removal, while COD and TP removal varied between about 10-40% and 30-80%, respectively, depending on the materials and the effluent in question; separation efficiency generally decreased with decreasing coagulant and/or flocculant concentration. To enhance organic matter degradation, iron-based coagulation was coupled with H(2)O(2), thus simulating a Fenton reaction and this increased COD reduction to about 60%. The original, untreated OME was strongly phytotoxic to lettuce seeds even after several dilutions with water; however, phytotoxicity decreased considerably following treatment with lime and cationic poly-electrolytes; this was attributed to the removal of phenols and other phytotoxic species from the liquid phase.  相似文献   

11.
Sludge samples were collected from different treatment steps of Gaobeidian wastewater treatment plant (WWTP) of Beijing City, PR China, to investigate the distributions of total and chemical fractions of Fe, Mn, Ni, Cu, Zn, Cr, Pb, and Mo in different sludges. The highest total concentrations were found for Fe, Mn, Pb, and Mo in digested sludge (DS), Ni and Cr in thickened sludge (TS), Zn in dewatering sludge (DWS), and Cu in active sludge (AS). The lowest concentrations were observed in AS, except for Cu in TS. Significant differences of total metal concentration were observed between AS and TS (or DS), suggesting that sludge thickening and digesting treatments significantly influenced the total metal concentrations. Fe, Cu, Ni, Cr, Mo, and Pb distributed principally in the residual fraction in all sludges, while Zn and Mn presented in a highly available fraction. For same metal in different sludges, the portion of easily mobile fraction decreased significantly along the wastewater treatment process, and metals in AS presented in the highest available fraction. Organic matter contents, TN, and TP of sludges exhibited a significant positive correlation with the concentrations of exchangeable and reducible fraction of Pb, Mo, Cr, Cu, and Fe, while sludge pH demonstrated significant negative correlations with the concentrations of these metals.  相似文献   

12.
The management of arsenic wastes: problems and prospects   总被引:2,自引:0,他引:2  
Arsenic has found widespread use in agriculture and industry to control a variety of insect and fungicidal pests. Most of these uses have been discontinued, but residues from such activities, together with the ongoing generation of arsenic wastes from the smelting of various ores, have left a legacy of a large number of arsenic-contaminated sites. The treatment and/or removal of arsenic is hindered by the fact that arsenic has a variety of valence states. Arsenic is most effectively removed or stabilized when it is present in the pentavalent arsenate form. For the removal of arsenic from wastewater, coagulation, normally using iron, is the preferred option. The solidification/stabilization of arsenic is not such a clear-cut process. Factors such as the waste's interaction with the additives (e.g. iron or lime), as well as any effect on the cement matrix, all impact on the efficacy of the fixation. Currently, differentiation between available solidification/stabilization processes is speculative, partly due to the large number of differing leaching tests that have been utilized. Differences in the leaching fluid, liquid-to-solid ratio, and agitation time and method all impact significantly on the arsenic leachate concentrations.This paper reviews options available for dealing with arsenic wastes, both solid and aqueous through an investigation of the methods available for the removal of arsenic from wastewater as well as possible solidification/stabilization options for a variety of waste streams.  相似文献   

13.
The removal of fenitrothion (FT) pesticide residues from vegetables by immersion in ozone-microbubbled solution was demonstrated. FT-treated lettuce, cherry tomatoes, and strawberries were immersed in ozone-microbubbled, ozone-millibubbled, and dechlorinated water. After that the percentage of residual FT in the vegetables was determined. Residual FT was efficiently removed from lettuce by immersing it in ozone-microbubbled solution containing more than 1.0 ppm dissolved ozone, or continuously generated ozone-microbubbled solution containing 2.0 ppm dissolved ozone. Similarly, for cherry tomatoes and strawberries, the continuously generated ozone-microbubbled solution containing 2.0 ppm dissolved ozone was highly effective. These results showed that ozone microbubbles effectively removed residual pesticides not only from leafy vegetables but also from fruity vegetables.  相似文献   

14.
This study provides a facile single-step coprecipitation method for preparing size-controlled high crystalline magnetite nanoparticles in water system without using any organic solvents. In this method, an iron ions solution and an alkaline solution are simply mixed at room temperature without using any additional heating treatment. The size of obtained magnetite nanoparticles greatly depended on the coexisting anionic species in the starting solution because the coexisting anions greatly influenced both the formation of crystal nuclei and the dispersion stabilisation of formed precipitates. The size control of magnetite nanoparticles having high crystallinity and ferromagnetic property could be successfully achieved by using the effects of coexisting anions. For synthesising finer magnetite nanoparticles, the presence of lactate ion in the starting solution was effective, and coarser ones could be synthesised under higher ferrous/ferric ions molar ratios.  相似文献   

15.
Due to impact and abrasion of projectiles firing berms of shooting ranges frequently exhibit increased levels of bullet-borne contaminants. Stabilisation of backstop soils may be a promising pre- and post-use treatment to minimise leaching and bioavailability. This study focused on mobility and phytotoxicity of antimony, copper, and lead in stabilised berm material compared to an untreated control. Ferric (goethite, deferrisation sludge) and phosphatic amendments (diammonium phosphate, calcium dihydrogen phosphate) were used. Batch and column experiments demonstrated effective stabilisation of the contaminants by ferric amendments. Sequential extractions showed an increase of contaminant fractions associated with iron (hydr)oxides. Stabilisation was accompanied by a detoxification of seepage water compared to the control soil as shown by Duckweed growth inhibition. Contrasting the ferric additives, phosphatic amendments effectively stabilised lead but mobilised copper and antimony possibly due to a competitive displacement process. Thereby, benefits of lead stabilisation were completely overridden; this was underlined by increased phytotoxicity relative to the untreated soil. Overall, understanding stabilised soil as a multicomponent system is a prerequisite for the choice of appropriate amendments. This requires the synopsis of results from complementary test methods and a screening for a wide range of substances.  相似文献   

16.
A newly developed mechanochemical process for the simple aqueous phase synthesis of crystalline magnetite nanoparticles has been experimentally investigated. In this process, a suspension of ferric hydroxide precursor is milled at room temperature using a horizontal tumbling ball mill consisting of a stainless steel pot and balls. Ferric hydroxide is transformed to magnetite without the use of a reducing agent. As a model starting material for the investigation, a pH-adjusted suspension of crystalline goethite was used. As the milling time increased, goethite disappeared along with the simultaneous formation of magnetite. A single phase of magnetite was obtained after 16 h of milling. A reaction mechanism for the formation of magnetite has been proposed based on oxidation–reduction reactions, in which the corrosion of iron in the pot and balls plays an important role. Free electrons are generated by the release of ferrous ions from the stainless steel in an anodic reaction, which then reduce goethite to ferrous hydroxide in a cathodic reaction. The solid phase reaction between ferrous hydroxide and goethite produces magnetite. Not only could the mechanochemical effect induced by the collision of balls accelerate the corrosion even under alkaline conditions, it can also promote the formation and crystallization of magnetite.  相似文献   

17.
This study investigates the efficiency of zero valent iron (ZVI) to remove arsenate from water. Batch experiments were carried out to study the removal kinetics of arsenate under different pH values and in the presence of low and high concentrations of various anions (chloride, carbonate, nitrate, phosphate, sulphate and borate), manganese and dissolved organic matter. Borate and organic matter, particularly at higher concentrations, inhibited the removal of arsenic. Column tests were carried out to investigate the removal of arsenate from tap water under dynamic conditions. The concentrations of arsenic and iron as well as the pH and Eh were measured in treated water. Efficient removal of arsenate was observed resulting at concentrations below the limit of 10 μg/L in treated waters.  相似文献   

18.
Removal of arsenic from water by zero-valent iron   总被引:8,自引:0,他引:8  
Batch and column experiments were conducted to investigate the effect of dissolved oxygen (DO) and pH on arsenic removal with zero-valent iron [Fe(0)]. Arsenic removal was dramatically affected by the DO content and the pH of the solution. Under oxic conditions, arsenate [As(V)] removal by Fe(0) filings was faster than arsenite [As(III)]. Greater than 99.8% of the As(V) was removed whereas 82.6% of the As(III) was removed at pH 6 after 9h of mixing. When the solution was purged with nitrogen gas to remove DO, less than 10% of the As(III) and As(V) was removed. High DO content and low solution pH also increased the rate of iron corrosion. The removal of arsenic by Fe(0) was attributed to adsorption by iron hydroxides generated from the oxic corrosion of Fe(0). The column results indicated that a filtration system consisting of an iron column and a sand filter could be used for treatment of arsenic in drinking water.  相似文献   

19.
Ion chromatographic methods developed to separate either cationic, neutral, and anionic arsenic species or soluble and suspended arsenic species were successfully used in DORM-2 standard reference material and in water samples of environmental interest. The most effective separation of the analytes within 10 min was achieved with a nitric acid gradient elution using a strong anion-exchange stationary phase with additional capacity for hydrophobic interactions (IonPac AS7). The elemental-specific detection mode allows the sensitive determination of the arsenic species in the submicrogram per liter range. The calibration results were compared with those obtained by an alkaline water-methanol mixed eluent combined with a weak anion-exchange column (IonPac AS4A-SC). Differences in sensitivities were eclipsed by the low level of the baseline and the noise when using nitric acid. The gradient method was used to determine arsenic species in highly ferrous/ferric-contaminated leachates of lignite spoil. The companion elements underwent parallel screening to explain the interactions of arsenic species with the major elements.  相似文献   

20.
Quicklime and quicklime-fly ash-based stabilization/solidification (S/S) effectiveness was evaluated by performing semi-dynamic leaching tests (American Nuclear Society 16.1). Artificial soil samples, contaminated with arsenic trioxide (As2O3) as well as field soil samples contaminated with arsenic (As) were tested. The artificial soils were prepared by mixing amounts of kaolinite or montmorillonite with fine quartz sand. The S/S effectiveness was evaluated by measuring effective diffusion coefficients (De) and leachability indices (LX). Treatment was most effective in kaolinite-based artificial soils treated with quicklime and in quicklime-fly ash treated field soils. The experimental results indicate that De values were lowered as a result of S/S treatment. Upon treatment LX values were higher than 9, suggesting that S/S treated soils are acceptable for "controlled utilization". Based on a model developed by de Groot and van der Sloot [G.J. de Groot, H.A. van der Sloot, in: T.M. Gilliam, C.C. Wiles (Eds.), Stabilization and Solidification of Hazardous, Radioactive, and Mixed Wastes, vol. 2, ASTM STP 1123, ASTM, PA, 1992, p. 149], the leaching mechanism for all of the treated soils was found to be controlled by diffusion. The effect of soluble silica (Si) on As leachability was also evaluated. When soluble Si concentration was less than 1 ppm, As leachability was the lowest. The controlling mechanism of As immobilization whether sorption, precipitation, or inclusion was also evaluated. It was determined that precipitation was the dominant mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号