首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We have developed fluorescent protein probes specific for parallel G‐quadruplexes by attaching cyan fluorescent protein to the G‐quadruplex‐binding motif of the RNA helicase RHAU. Fluorescent probes containing RHAU peptide fragments of different lengths were constructed, and their binding to G‐quadruplexes was characterized. The selective recognition and discrimination of G‐quadruplex topologies by the fluorescent protein probes was easily detected by the naked eye or by conventional gel imaging.  相似文献   

2.
We previously identified quinoline‐based oligoamide helical foldamers and a trimeric macrocycle as selective ligands of DNA quadruplexes. Their helical structures might permit targeting of the backbone loops and grooves of G‐quadruplexes instead of the G‐tetrads. Given the vast array of morphologies G‐quadruplex structures can adopt, this might be a way to achieve sequence selective binding. Here, we describe the design and synthesis of molecules based on macrocyclic and helically folded oligoamides. We tested their ability to interact with the human telomeric G‐quadruplex and an array of promoter G‐quadruplexes by using FRET melting assay and single‐molecule FRET. Our results show that they constitute very potent ligands—comparable to the best so far reported. Their modes of interaction differ from those of traditional tetrad binders, thus opening avenues for the development of molecules specific for certain G‐quadruplex conformations.  相似文献   

3.
4.
5.
The development of biophysical systems that enable an understanding of the structure and ligand‐binding properties of G‐quadruplex (GQ)‐forming nucleic acid sequences in cells or models that mimic the cellular environment would be highly beneficial in advancing GQ‐directed therapeutic strategies. Herein, the establishment of a biophysical platform to investigate the structure and recognition properties of human telomeric (H‐Telo) DNA and RNA repeats in a cell‐like confined environment by using conformation‐sensitive fluorescent nucleoside probes and a widely used cellular model, bis(2‐ethylhexyl) sodium sulfosuccinate reverse micelles (RMs), is described. The 2′‐deoxy and ribonucleoside probes, composed of a 5‐benzofuran uracil base analogue, faithfully report the aqueous micellar core through changes in their fluorescence properties. The nucleoside probes incorporated into different loops of H‐Telo DNA and RNA oligonucleotide repeats are minimally perturbing and photophysically signal the formation of respective GQ structures in both aqueous buffer and RMs. Furthermore, these sensors enable a direct comparison of the binding affinity of a ligand to H‐Telo DNA and RNA GQ structures in the bulk and confined environment of RMs. These results demonstrate that this combination of a GQ nucleoside probe and easy‐to‐handle RMs could provide new opportunities to study and devise screening‐compatible assays in a cell‐like environment to discover GQ binders of clinical potential.  相似文献   

6.
Functionalized synthetic oligonucleotides are finding growing applications in research, clinical studies, and therapy. However, it is not easy to prepare them in a biocompatible and highly efficient manner. We report a new strategy to synthesize oligonucleotides with promising nucleic acid targeting and detection properties. We focus in particular on the pH sensitivity of these new probes and their high target specificity. For the first time, human copper(I)‐binding chaperon Cox17 was applied to effectively catalyze click labeling of oligonucleotides. This was performed under ultramild conditions with fluorophore, peptide, and carbohydrate azide derivatives. In thermal denaturation studies, the modified probes showed specific binding to complementary DNA and RNA targets. Finally, we demonstrated the pH sensitivity of the new rhodamine‐based fluorescent probes in vitro and rationalize our results by electronic structure calculations.  相似文献   

7.
The helicase from severe acute respiratory syndrome coronavirus (SARS‐CoV) possesses NTPase, duplex RNA/DNA‐unwinding and RNA‐capping activities that are essential for viral replication and proliferation. Here, we have isolated DNA aptamers against the SARS‐CoV helicase from a combinatorial DNA library. These aptamers show two distinct classes of secondary structure, G‐quadruplex and non‐G‐quadruplex, as shown by circular dichroism and gel electrophoresis. All of the aptamers that were selected stimulated ATPase activity of the SARS‐CoV helicase with low‐nanomolar apparent Km values. Intriguingly, only the non‐G‐quadruplex aptamers showed specific inhibition of helicase activities, whereas the G‐quadruplex aptamers did not inhibit helicase activities. The non‐G‐quadruplex aptamer with the strongest inhibitory potency was modified at the 3′‐end with biotin or inverted thymidine, and the modification increased its stability in serum, particularly for the inverted thymidine modification. Structural diversity in selection coupled to post‐selection stabilisation has provided new insights into the aptamers that were selected for a helicase target. These aptamers are being further developed to inhibit SARS‐CoV replication.  相似文献   

8.
The synthesis of two new phosphoramidite building blocks for the incorporation of 5‐(pyren‐1‐yl)uracilyl unlocked nucleic acid (UNA) monomers into oligonucleotides has been developed. Monomers containing a pyrene‐modified nucleobase component were found to destabilize an i‐motif structure at pH 5.2, both under molecular crowding and noncrowding conditions. The presence of the pyrene‐modified UNA monomers in DNA strands led to decreases in the thermal stabilities of DNA*/DNA and DNA*/RNA duplexes, but these duplexes' thermal stabilities were better than those of duplexes containing unmodified UNA monomers. Pyrene‐modified UNA monomers incorporated in bulges were able to stabilize DNA*/DNA duplexes due to intercalation of the pyrene moiety into the duplexes. Steady‐state fluorescence emission studies of oligonucleotides containing pyrene‐modified UNA monomers revealed decreases in fluorescence intensities upon hybridization to DNA or RNA. Efficient quenching of fluorescence of pyrene‐modified UNA monomers was observed after formation of i‐motif structures at pH 5.2. The stabilizing/destabilizing effect of pyrene‐modified nucleic acids might be useful for designing antisense oligonucleotides and hybridization probes.  相似文献   

9.
Fluorescent oligomers that are resistant to enzymatic degradation and report their binding to target oligonucleotides (ONs) by changes in fluorescence properties are highly useful in developing nucleic‐acid‐based diagnostic tools and therapeutic strategies. Here, we describe the synthesis and photophysical characterization of fluorescent peptide nucleic acid (PNA) building blocks made of microenvironment‐sensitive 5‐(benzofuran‐2‐yl)‐ and 5‐(benzothiophen‐2‐yl)‐uracil cores. The emissive monomers, when incorporated into PNA oligomers and hybridized to complementary ONs, are minimally perturbing and are highly sensitive to their neighboring base environment. In particular, benzothiophene‐modified PNA reports the hybridization process with significant enhancement in fluorescence intensity, even when placed in the vicinity of guanine residues, which often quench fluorescence. This feature was used in the turn‐on detection of G‐quadruplex‐forming promoter DNA sequences of human proto‐oncogenes (c‐myc and c‐kit). Furthermore, the ability of benzothiophene‐modified PNA oligomer to report the presence of an abasic site in RNA enabled us to develop a simple fluorescence hybridization assay to detect and estimate the depurination activity of ribosome‐inactivating protein toxins. Our results demonstrate that this approach with responsive PNA probes will provide new opportunities to develop robust tools to study nucleic acids.  相似文献   

10.
The transient nucleolus plays a central role in the up‐regulated synthesis of ribosomal RNA (rRNA) to sustain ribosome biogenesis, a hallmark of aberrant cell growth. This function, in conjunction with its unique pathohistological features in malignant cells and its ability to mediate apoptosis, renders this sub‐nuclear structure a potential target for chemotherapeutic agents. In this Minireview, structurally and functionally diverse small molecules are discussed that have been reported to either interact with the nucleolus directly or perturb its function indirectly by acting on its dynamic components. These molecules include all major classes of nucleic‐acid‐targeted agents, antimetabolites, kinase inhibitors, anti‐inflammatory drugs, natural product antibiotics, oligopeptides, as well as nanoparticles. Together, these molecules are invaluable probes of structure and function of the nucleolus. They also provide a unique opportunity to develop novel strategies for more selective and therefore better‐tolerated chemotherapeutic intervention. In this regard, inhibition of RNA polymerase‐I‐mediated rRNA synthesis appears to be a promising mechanism for killing cancer cells. The recent development of molecules targeted at G‐quadruplex‐forming rRNA gene sequences, which are currently undergoing clinical trials, seems to attest to the success of this approach.  相似文献   

11.
There is currently significant interest in the development of G‐quadruplex‐interactive compounds, given the relationship between the ability to stabilize these non‐canonical DNA structures and anticancer activity. In this study, a set of biophysical assays was applied to evaluate the binding of six drug‐like ligands to DNA G‐quadruplexes with different folding topologies. Interestingly, two of the investigated ligands showed selective G‐quadruplex‐stabilizing properties and biological activity. These compounds may represent useful leads for the development of more potent and selective ligands.  相似文献   

12.
The majority of studies on DNA triple helices have been focused on pH‐sensitive parallel triplexes with Hoogsteen CT‐containing third strands that require protonation of cytosines. Reverse Hoogsteen GT/GA‐containing antiparallel triplex‐forming oligonucleotides (TFOs) do not require an acidic pH but their applicability in triplex technology is limited because of their tendency to form undesired highly stable aggregates such as G‐quadruplexes. In this study, G‐rich oligonucleotides containing 2–4 insertions of twisted intercalating nucleic acid (TINA) monomers are demonstrated to disrupt the formation of G‐quadruplexes and form stable antiparallel triplexes with target DNA duplexes. The structure of TINA‐incorporated oligonucleotides was optimized, the rules of their design were established and the optimal triplex‐forming oligonucleotides were selected. These oligonucleotides show high affinity towards a 16 bp homopurine model sequence from the HIV‐1 genome; dissociation constants as low as 160 nM are observed whereas the unmodified TFO does not show any triplex formation and instead forms an intermolecular G‐quadruplex with Tm exceeding 90 °C in the presence of 50 mM NaCl. Here we present a set of rules that help to reach the full potential of TINA‐TFOs and demonstrate the effect of TINA on the formation and stability of triple helical DNA.  相似文献   

13.
Multiparametric flow cytometry offers a powerful approach to single‐cell analysis with broad applications in research and diagnostics. Despite advances in instrumentation, progress in methodology has lagged. Currently there is no simple and efficient method for antibody labeling or quantifying the number of antibodies bound per cell. Herein, we describe a DNA‐directed assembly approach to fluorescent labeling that overcomes these barriers. Oligonucleotide‐tagged antibodies and microparticles can be annealed to complementary oligonucleotides bearing fluorophores to create assay‐specific labeling probes and controls, respectively. The ratio of the fluorescence intensity of labeled cells to the control particles allows direct conversion of qualitative data to quantitative units of antibody binding per cell. Importantly, a single antibody can be labeled with any fluorophore by using a simple mix‐and‐match labeling strategy. Thus, any antibody can provide a quantitative probe in any fluorescent channel, thus overcoming major barriers to the use of flow cytometry as a technique for systems biology and clinical diagnostics.  相似文献   

14.
Split spinach aptamer (SSA) probes for fluorescent analysis of nucleic acids were designed and tested. In SSA design, two RNA or RNA/DNA strands hybridized to a specific nucleic acid analyte and formed a binding site for low‐fluorescent 3,5‐difluoro‐4‐hydroxybenzylidene imidazolinone (DFHBI) dye, which resulted in up to a 270‐fold increase in fluorescence. The major advantage of the SSA over state‐of‐the art fluorescent probes is high selectivity: it produces only background fluorescence in the presence of a single‐base‐mismatched analyte, even at room temperature. SSA is therefore a promising tool for label‐free analysis of nucleic acids at ambient temperatures.  相似文献   

15.
DNA molecules are known as the genetic information carriers. Recently, they have been explored as a new generation of biocatalysts or chiral scaffolds for metal catalysts. There is also growing interest in finding alternative solvents for DNA preservation and stabilization, including two unique types of solvents: ionic liquids (ILs) and deep eutectic solvents (DES). Therefore, it is important to understand how DNA molecules interact with these novel ionic solvent systems (i.e. ILs and DES). It is well known that inorganic divalent and monovalent ions preferentially bind with major and minor grooves of DNA structures. However, in the case of ILs and DES, organic cations may intrude into the DNA minor grooves; more importantly, electrostatic attraction between organic cations and the DNA phosphate backbone becomes a predominant interaction, accompanied by hydrophobic and polar interactions between ILs and DNA major and minor grooves. In addition, anions may form hydrogen bonds with cytosine, adenine and guanine bases. Despite these strong interactions, DNA molecules maintain a double helical structure in most ionic solvent systems, especially in aqueous IL solutions. The exciting advances of G‐quadruplex DNA structures in ILs and DES are also discussed. © 2014 Society of Chemical Industry  相似文献   

16.
With the potential to engineer biological systems, synthetic biology is an emerging field that combines various disciplines of sciences. It encompasses combinations of DNA, RNA and protein modules for constructing desired systems and the “rewiring” of existing signalling networks. Despite recent advances, this field still lags behind in the artificial reconstruction of cellular processes, and thus demands new modules and switches to create “genetic circuits”. The widely characterised noncanonical nucleic acid secondary structures, G‐quadruplexes are promising candidates to be used as biological modules in synthetic biology. Structural plasticity and functional versatility are significant G‐quadruplex traits for its integration into a biological system and for diverse applications in synthetic circuits.  相似文献   

17.
Several anti‐HIV aptamers adopt DNA quadruplex structures. Among these, “Hotoda's aptamer” (base sequence TGGGAG) was one of the first to be discovered. Although it has been the topic of some recent research, no detailed structural investigations have been reported. Here we report structural investigations on this aptamer and analogues with related sequences, by using UV, CD, and NMR spectroscopy as well as electrophoretic techniques. The addition of a 3′‐end thymine has allowed us to obtain a single, investigable quadruplex structure. Data clearly point to the presence of an A‐tetrad. Furthermore, the effects of the incorporation of an 8‐methyl‐2′‐deoxyguanosine at the 5′‐end of the G‐run were investigated.  相似文献   

18.
The synthesis and properties two series of new 2′‐O‐methyl RNA probes, each containing a single insertion of a 2′‐bispyrenylmethylphosphorodiamidate derivative of a nucleotide (U, C, A, and G), are described. As demonstrated by UV melting studies, the probes form stable complexes with model RNAs and DNAs. Significant increases (up to 21‐fold) in pyrene excimer fluorescence intensity were observed upon binding of most of the probes with complementary RNAs, but not with DNAs. The fluorescence spectra are independent of the nature of the modified nucleotides. The nucleotides on the 5′‐side of the modified nucleotide have no effect on the fluorescence spectra, whereas the natures of the two nucleotides on the 3′‐side are important: CC, CG, and UC dinucleotide units on the 3′‐side of the modified nucleotide provide the maximum increases in excimer fluorescence intensity. This study suggests that these 2′‐bispyrene‐labeled 2′‐O‐methyl RNA probes might be useful tools for detection of RNAs.  相似文献   

19.
20.
In order to expand the potential applications of G‐quadruplex structures, we explored the ability of heterochiral oligodeoxynucleotides based on the thrombin‐binding aptamer (TBA) sequence to fold into similar complexes, with particular focus on their resistance in biological environments. A combination of CD and NMR techniques was used. Similarly to TBA, the ODN ggTTggtgtggTTgg (lower case letters indicate L residues) is able to fold into a chair‐like antiparallel G‐quadruplex structure, but has a slightly higher thermal stability. The discovery that heterochiral ODNs are able to form stable G‐quadruplex structures opens up new possibilities for their development in several fields, as aptamers, sensors and, as recently shown, as catalysts for enantioselective reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号