首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) indirectly stimulates bone formation, but little is known about its direct effect on bone formation. In this study, we observed that 1,25(OH)2D3 enhances adipocyte differentiation, but inhibits osteoblast differentiation during osteogenesis. The positive role of 1,25(OH)2D3 in adipocyte differentiation was confirmed when murine osteoblasts were cultured in adipogenic medium. Additionally, 1,25(OH)2D3 enhanced the expression of adipocyte marker genes, but inhibited the expression of osteoblast marker genes in osteoblasts. The inhibition of osteoblast differentiation and promotion of adipocyte differentiation mediated by 1,25(OH)2D3 were compensated by Runx2 overexpression. Our results suggest that 1,25(OH)2D3 induces the transdifferentiation of osteoblasts to adipocytes via Runx2 downregulation in osteoblasts.  相似文献   

2.
成骨细胞是人和高等动物体内重要的功能细胞,在骨形成、骨发生以及骨内物质更新工程中发挥着重要的作用。1,25-二羟维生素D_3对成骨细胞的增殖和分化等过程具有重要影响。  相似文献   

3.
AMOP‐H‐OH (sazetidine‐A; 6‐[5‐(azetidin‐2‐ylmethoxy)pyridin‐3‐yl]hex‐5‐yn‐1‐ol) and some sulfur‐bearing analogues were tested for their activities in vitro against human α4β2‐, α4β4‐, α3β4*‐ and α1*‐nicotinic acetylcholine receptors (nAChRs). AMOP‐H‐OH was also assessed in an antidepressant efficacy model. AMOP‐H‐OH and some of its analogues have high potency and selectivity for α4β2‐nAChRs over other nAChR subtypes. Effects are manifested as partial agonism, perhaps reflecting selectivity for high sensitivity (α4)3(β2)2‐nAChRs. More prolonged exposure to AMOP‐H‐OH and its analogues produces inhibition of subsequent responses to acute challenges with full nicotinic agonists, again selectively for α4β2‐nAChRs over other nAChR subtypes. The inhibition is mediated either via antagonism or desensitization of nAChR function, but the degree of inhibition of α4β2‐nAChRs is limited by the partial agonist activity of the drugs. Certain aspects of the in vitro pharmacology suggest that AMOP‐H‐OH and some of its analogues have a set of binding sites on α4β2‐nAChRs that are distinct from those for full agonists. The in vitro pharmacological profile suggests that peripheral side effects of AMOP‐H‐OH or its analogues would be minimal and that their behavioral effects would be dominated by central nAChR actions. AMOP‐H‐OH also has profound and high potency antidepressant‐like effects in the forced swim test. The net action of prolonged exposure to AMOP‐H‐OH or its analogues, as for nicotine, seems to be a selective decrease in α4β2‐nAChR function. Inactivation of nAChRs may be a common neurochemical endpoint for nicotine dependence, its treatment, and some of its manifestations, including relief from depression.  相似文献   

4.
Ferroptosis is a kind of iron-dependent programed cell death. Vitamin D has been shown to be an antioxidant and a regulator of iron metabolism, but the relationship between vitamin D and ferroptosis is poorly studied in fish. This study used zebrafish liver cells (ZFL) to establish a ferroptosis model to explore the effect of 1,25(OH)2D3 on cell ferroptosis and its mechanism of action. The results showed that different incubation patterns of 1,25(OH)2D3 improved the survival rate of ZFL, mitigated mitochondrial damage, enhanced total glutathione peroxidase (GPx) activity, and reduced intracellular reactive oxygen species (ROS), lipid peroxidation (LPO), and malondialdehyde (MDA), as well as iron ion levels, with the best effect at 200 pM 1,25(OH)2D3 preincubation for 72 h. Preincubation of ZFL at 200 pM 1,25(OH)2D3 for 72 h downgraded keap1 and ptgs2 gene expression, increased nrf2, ho-1, fth1, gpx4a,b expression, and lowered the expression of the nf-κb p65,il-6,il-1β gene, thus reducing the expression of hamp1. The above results indicate that different incubation patterns of 1,25(OH)2D3 have protective effects on ferroptosis of ZFL induced by ferroptosis activator RSL3 and 1,25(OH)2D3 can inhibit ferroptosis of ZFL by regulating Keap1–Nrf2–GPx4 and NF-κB–hepcidin axis.  相似文献   

5.
Vitamin D plays a crucial role in regulation of the immune response. However, treatment of autoimmune diseases with 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] doses sufficient to be effective is prohibitive due to its calcemic and toxic effects. We use the collagen-induced arthritis (CIA) model to analyze the efficacy of the noncalcemic analog of vitamin D, 20S-hydroxyvitamin D3 [20S(OH)D3], as well as 1,25(OH)2D3, to attenuate arthritis and explore a potential mechanism of action. Mice fed a diet deficient in vitamin D developed a more severe arthritis characterized by enhanced secretion of T cell inflammatory cytokines, compared to mice fed a normal diet. The T cell inflammatory cytokines were effectively suppressed, however, by culture of the cells with 20S(OH)D3. Interestingly, one of the consequences of culture with 1,25(OH)2D3 or 20S(OH)D3, was upregulation of the natural inhibitory receptor leukocyte associated immunoglobulin-like receptor-1 (LAIR-1 or CD305). Polyclonal antibodies which activate LAIR-1 were also capable of attenuating arthritis. Moreover, oral therapy with active forms of vitamin D suppressed arthritis in LAIR-1 sufficient DR1 mice, but were ineffective in LAIR-1−/− deficient mice. Taken together, these data show that the effect of vitamin D on inflammation is at least, in part, mediated by LAIR-1 and that non-calcemic 20S(OH)D3 may be a promising therapeutic agent for the treatment of autoimmune diseases such as Rheumatoid Arthritis.  相似文献   

6.
Deregulated melanogenesis is involved in melanomagenesis and melanoma progression and resistance to therapy. Vitamin D analogs have anti-melanoma activity. While the hypercalcaemic effect of the active form of Vitamin D (1,25(OH)2D3) limits its therapeutic use, novel Vitamin D analogs with a modified side chain demonstrate low calcaemic activity. We therefore examined the effect of secosteroidal analogs, both classic (1,25(OH)2D3 and 25(OH)D3), and novel relatively non-calcemic ones (20(OH)D3, calcipotriol, 21(OH)pD, pD and 20(OH)pL), on proliferation, colony formation in monolayer and soft-agar, and mRNA and protein expression by melanoma cells. Murine B16-F10 and hamster Bomirski Ab cell lines were shown to be effective models to study how melanogenesis affects anti-melanoma treatment. Novel Vitamin D analogs with a short side-chain and lumisterol-like 20(OH)pL efficiently inhibited rodent melanoma growth. Moderate pigmentation sensitized rodent melanoma cells towards Vitamin D analogs, and altered expression of key genes involved in Vitamin D signaling, which was opposite to the effect on heavily pigmented cells. Interestingly, melanogenesis inhibited ligand-induced Vitamin D receptor translocation and ligand-induced expression of VDR and CYP24A1 genes. These findings indicate that melanogenesis can affect the anti-melanoma activity of Vitamin D analogs in a complex manner.  相似文献   

7.
The active form of vitamin D, 1α,25-(OH)2D3, not only promotes intestinal calcium absorption, but also regulates the formation of osteoclasts (OCs) and their capacity for bone mineral dissolution. Gal-3 is a newly discovered bone metabolic regulator involved in the proliferation, differentiation, and apoptosis of various cells. However, the role of galectin-3 (gal-3) in OC formation and the regulatory effects of 1α,25-(OH)2D3 have yet to be explored. To confirm whether gal-3 contributes to the regulatory effects of 1α,25-(OH)2D3 on osteoclastogenesis, osteoclast precursors (OCPs) were induced by macrophage colony stimulating factor (M-CSF) and receptor activator of nuclear factor κB ligand (RANKL). TRAP staining and bone resorption analyses were used to verify the formation and activation of OCs. qPCR, Western blotting, co-immunoprecipitation, and immunofluorescence assays were used to detect gene and protein expression. The regulatory effects of gal-3 in OC formation after treatment with 1α,25-(OH)2D3 were evaluated using gal-3 siRNA. The results showed that 1α,25-(OH)2D3 significantly increased gal-3 expression and inhibited OC formation and bone resorption. Expression levels of OC-related genes and proteins, matrix metalloproteinase 9 (MMP-9), nuclear factor of activated T cells 1 (NFATc1), and cathepsin K (Ctsk) were also inhibited by 1α,25-(OH)2D3. Gal-3 knockdown attenuated the inhibitory effects of 1α,25-(OH)2D3 on OC formation, activation, and gene and protein expression. In addition, gal-3 was co-localized with the vitamin D receptor (VDR). These data suggest that gal-3 contributes to the osteoclastogenesis inhibitory effect of lα,25-(OH)2D3, which is involved in bone and calcium homeostasis.  相似文献   

8.
The aim of the study was to screen any possible synergistic effects related to the combination of nitrogen–phosphorus fire retardant and Mg(OH)2/Al(OH)3. This combination is used to improve fire performance, especially smoke suppression of poplar through ultrasonic wave impregnation after microwave treatment. In this study, nano‐SiO2 was used to impregnate poplar treated with nitrogen–phosphorus fire retardant and form a hydrophobic layer on wood cells in order to improve hygroscopicity and reduce water uptake. Cone tests and thermal analysis showed that poplar treated with blended fire retardant had improved behavior. Results show that a 20% and 25% nitrogen–phosphorus fire‐retardant solution (blended by adding 10% Mg(OH)2/Al(OH)3 based on the dry weight of nitrogen–phosphorus fire retardant) was more effective for smoke suppression. The heat release rate, total heat release, and total smoke production of a 25% nitrogen–phosphorus fire‐retardant solution blended by adding 10% Mg(OH)2/Al(OH)3 showed significant reduction. The char residual yield showed a marked increase to 35.5%. Fourier transform infrared analysis suggested a –CH2–Si–CH2– and Si–O–C stretching vibration in nano‐SiO2 treated poplar, which greatly decreased the hygroscopicity of fire‐retardant‐treated poplar. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Polymeric materials are used extensively, but their applications are limited because many of them are flammable. Therefore ways to make them flame retardant have received much attention. In this work, polypropylene (PP) was used as the matrix resin, aluminium hydroxide (Al(OH)3) and magnesium hydroxide (Mg(OH)2) as flame‐retardant additives and zinc borate (ZB) as a flame‐retardant synergist. PP/Al(OH)3/Mg(OH)2 and PP/Al(OH)3/Mg(OH)2/ZB flame‐retardant composites were prepared with a twin‐screw extruder. The flame‐retardant properties, i.e. oxygen index (OI), burning velocity and smoke density, of the composites were measured. The results showed that OI increased with an increase of the filler content and decreased with an increase of the filler particle diameter. The burning velocity decreased with an increase of the filler content, while it first increased and then decreased with an increase of the filler particle diameter. The smoke density decreased with an increase of the filler content and increased with an increase of the filler particle diameter. There was a flame‐retardant synergy between Al(OH)3/Mg(OH)2 and ZB in the composites, and the smoke suppression effect was marked when ZB was added. Copyright © 2009 Society of Chemical Industry  相似文献   

10.
Vitamin D3 and its metabolites comprise an endocrine system which plays a critical role in calcium homeostasis. The active form of vitamin D3 is 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]. Chromatin localization of 1,25(OH)2D3 and sucrose density gradient centrifutation have demonstrated the presence of an intestinal mucosa cytosol receptor which specifically binds 1,25(OH)2D3. The kinetic parameters of 1,25(OH)2D3 binding to its receptor have been determined by hydroxylapatite and reconstituted chromatin cytosol assays. Utilization of these assays has also permitted a determination of the precise structural requirements of the vitamin D ligand for the intestinal receptor. Furthermore, it has been possible to propose two receptor-ligand models which are capable of accommodating the conformationaly modile A ring of the vitamin D seco-steroids.  相似文献   

11.
Structurally similar double-point modified analogues of 1,25-dihydroxyvitamin D2 (1,25D2) were screened in vitro for their pro-differentiating activity against the promyeloid cell line HL60. Their affinities towards human full length vitamin D receptor (VDR) and metabolic stability against human vitamin D 24-hydroxylase (CYP24A1) were also tested. The analogues (PRI-1730, PRI-1731, PRI-1732, PRI-1733 and PRI-1734) contained 5,6-trans modification of the A-ring and of the triene system, additional hydroxyl or unsaturation at C-22 in the side chain and reversed absolute configuration (24-epi) at C-24 of 1,25D2. As presented in this paper, introduction of selected structural modifications simultaneously in two distinct parts of the vitamin D molecule resulted in a divergent group of analogues. Analogues showed lower VDR affinity in comparison to that of the parent hormones, 1,25D2 and 1,25D3, and they caused effective HL60 cell differentiation only at high concentrations of 100 nM and above. Unexpectedly, introducing of a 5,6-trans modification combined with C-22 hydroxyl and 24-epi configuration switched off entirely the cell differentiation activity of the analogue (PRI-1734). However, this analogue remained a moderate substrate for CYP24A1, as it was metabolized at 22%, compared to 35% for 1,25D2. Other analogues from this series were either less (12% for PRI-1731 and PRI-1733) or more (52% for PRI-1732) resistant to the enzymatic deactivation. Although the inactive analogue PRI-1734 failed to show VDR antagonism, when tested in HL60 cells, its structure might be a good starting point for our design of a vitamin D antagonist.  相似文献   

12.
Triterpenes of betulinic acid type exhibit many interesting biological activities. Therefore a series of new 3α‐hydroxy‐lup‐20(29)‐ene‐23,28‐dioic acid derivatives 2a—22 with putative pharmacological activities were synthesized. As starting compounds 3α‐hydroxy‐lup‐20(29)‐ene‐23,28‐dioic acid ( 1a ), isolated from Schefflera octophylla, or its 3‐O‐acetyl derivative 1b were used. Mono‐ and diesters ( 2a—b from 1a , and 4d from 4c ) were prepared with CH2N2. Oxidation of the isopropenyl side chain with OsO4 yielded the 20,29‐diols ( 4a—b from 1b , and 19 from 17 ), which were in the case of 4b further transformed to the 29‐norketones 8a/mdash;b . Oxidation of the isopropenyl side chain with m‐chloroperbenzoic acid afforded the 20,29‐epoxide 12 (from 1b ) and the 29‐aldehydes and a‐hydroxy aldehydes ( 13a—c from 2a, 14a—c from 2b , and 16a—c from 15a ). Ring A was modified by a tosylation—elimination sequence using p‐TsCl/NaOAc, which afforded diolefin 15a (from 2a ) with Δ2,20(29) double bonds or 23‐nor‐Δ3,20(29)diolefin 17 (from 1a ). Compounds 4b, 4c , and 8a were coupled with L ‐methionin, L ‐phenylalanin, L ‐alanin, L ‐serin, and L ‐glutaminic acid via amide bonds at positions 23 and 28 to afford the amino acid conjugates 5a—7b and 9a—11 .  相似文献   

13.
Interleukin 33 (IL-33) belongs to the IL-1 family and is produced constitutively by epithelial and endothelial cells of various organs, such as the skin. It takes part in the maintenance of tissue homeostasis, repair, and immune response, including activation of Th2 lymphocytes. Its involvement in pathogenesis of several inflammatory diseases including psoriasis was also suggested, but this is not fully understood. The aim of the study was to investigate expression of IL-33 and its receptor, ST2, in psoriasis, and the effects of the active form of vitamin D (1,25(OH)2D3) on their expression in skin cells. Here we examined mRNA and protein profiles of IL-33 and ST2 in 18 psoriatic patients and healthy volunteers by qPCR and immunostaining techniques. Potential effects of 1,25(OH)2D3 and its receptor (VDR) on the expression of IL-33 and ST2 were tested in cultured keratinocytes, melanocytes, fibroblasts, and basal cell carcinoma cells. It was shown that 1,25(OH)2D3 effectively stimulated expression of IL-33 and its receptor ST2’s mRNAs in a time-dependent manner, in keratinocytes and to the lesser extends in melanocytes, but not in fibroblasts. Furthermore, the effect of vitamin D on expression of IL-33 and ST2 was VDR-dependent. Finally, we demonstrated that the expression of mRNA for IL-33 was mainly elevated in the psoriatic skin but not in its margin. Interestingly, ST2 mRNA was downregulated in psoriatic lesion compared to both marginal tissue as well as healthy skin. Our data indicated that vitamin D can modulate IL-33 signaling, opening up new perspectives for our understanding of the mechanism of vitamin D action in psoriasis therapy.  相似文献   

14.
The synergistic effect of 1‐phenyl‐3‐methyl‐4‐benzoyl‐pyrazalone‐5 (HPMBP, HA) and di‐(2‐ethylhexyl)‐2‐ethylhexylphosphonate (DEHEHP, B) in the extraction of rare earths (RE) from chloride solutions has been investigated. Under the experimental conditions used, there was no detectable extraction when DEHEHP was used as a single extractant while the amount of RE(III) extracted by HPMBP alone was also low. But mixtures of the two extractants at a certain ratio had very high extractability for all the RE(III). For example, the synergistic enhancement coefficient was calculated to be 9.35 for Y3+, and taking Yb3+ and Y3+ as examples, RE3+ is extracted as RE(OH)A2.B. The stoichiometry, extraction constants and thermodynamic functions such as Gibbs free energy change ΔG (?17.06 kJ mol?1), enthalpy change ΔH (?35.08 kJ mol?1) and entropy change ΔS (?60.47 J K?1 mol?1) for Y3+ at 298 K were determined. The separation factors (SF) for adjacent pairs of rare earths were calculated. Studies show that the binary extraction system not only enhances the extraction efficiency of RE(III) but also improves the selectivity, especially between La(III) and the other rare earth elements. Copyright © 2006 Society of Chemical Industry  相似文献   

15.
An improved synthetic route to 1α,25‐dihydroxyvitamin D3 des‐side chain analogues 2 a and 2 b with substituents at C18 is reported, along with their biological activity. These analogues display significant antiproliferative effects toward MCF‐7 breast cancer cells and prodifferentiation activity toward SW480‐ADH colon cancer cells; they are also characterized by a greatly decreased calcemic profile. The crystal structure of the human vitamin D receptor (hVDR) complexed to one of these analogues, 20(17→18)‐abeo‐1α,25‐dihydroxy‐22‐homo‐21‐norvitamin D3 ( 2 a ) reveals that the side chain introduced at position C18 adopts the same orientation in the ligand binding pocket as the side chain of 1α,25‐dihydroxyvitamin D3.  相似文献   

16.
Vitamin D3 hydroxylase (Vdh) from Pseudonocardia autotrophica is a cytochrome P450 monooxygenase that catalyzes the two‐step hydroxylation of vitamin D3 (VD3) to produce 25‐hydroxyvitamin D3 (25(OH)VD3) and 1α,25‐dihydroxyvitamin D3 (1α,25(OH)2VD3). These hydroxylated forms of VD3 are useful as pharmaceuticals for the treatment of conditions associated with VD3 deficiency and VD3 metabolic disorder. Herein, we describe the creation of a highly active T107A mutant of Vdh by engineering the putative ferredoxin‐binding site. Crystallographic and kinetic analyses indicate that the T107A mutation results in conformational change from an open to a closed state, thereby increasing the binding affinity with ferredoxin. We also report the efficient biocatalytic synthesis of 25(OH)VD3, a promising intermediate for the synthesis of various hydroxylated VD3 derivatives, by using nisin‐treated Rhodococcus erythropolis cells containing VdhT107A. The gene‐expression cassette encoding Bacillus megaterium glucose dehydrogenase‐IV was inserted into the R. erythropolis chromosome and expressed to avoid exhaustion of NADH in a cytoplasm during bioconversion. As a result, approximately 573 μg mL?1 25(OH)VD3 was successfully produced by a 2 h bioconversion.  相似文献   

17.
2,5‐Dibromo‐1,4‐(dihydroxymethyl)benzene was used as initiator in ring‐opening polymerization of ε‐caprolactone in the presence of stannous octoate (Sn(Oct)2) catalyst. The resulting poly(ε‐caprolactone) (PCL) macromonomer, with a central 2,5‐dibromo‐1,4‐diphenylene group, was used in combination with 1,4‐dibromo‐2,5‐dimethylbenzene for a Suzuki coupling in the presence of Pd(PPh3)4 as catalyst or using the system NiCl2/bpy/PPh3/Zn for a Yamamoto‐type polymerization. The poly(p‐phenylenes) (PPP) obtained, with PCL side chains, have solubility properties similar to those of the starting macromonomer, ie soluble in common organic solvents at room temperature. The new polymers were characterized by 1H and 13C NMR and UV spectroscopy and also by GPC measurements. The thermal behaviour of the precursor PCL macromonomer and the final poly(p‐phenylene)‐graft‐poly(ε‐caprolactone) copolymers were investigated by thermogravimetric analysis and differential scanning calorimetry analyses and compared. Copyright © 2004 Society of Chemical Industry  相似文献   

18.
The energetic material, 3‐nitro‐1,5‐bis(4,4′‐dimethyl azide)‐1,2,3‐triazolyl‐3‐azapentane (NDTAP), was firstly synthesized by means of Click Chemistry using 1,5‐diazido‐3‐nitrazapentane as main material. The structure of NDTAP was confirmed by IR, 1H NMR, and 13C NMR spectroscopy; mass spectrometry, and elemental analysis. The crystal structure of NDTAP was determined by X‐ray diffraction. It belongs to monoclinic system, space group C2/c with crystal parameters a=1.7285(8) nm, b=0.6061(3) nm, c=1.6712(8) nm, β=104.846(8)°, V=1.6924(13) nm3, Z=8, μ=0.109 mm−1, F(000)=752, and Dc=1.422 g cm−3. The thermal behavior and non‐isothermal decomposition kinetics of NDTAP were studied with DSC and TG‐DTG methods. The self‐accelerating decomposition temperature and critical temperature of thermal explosion are 195.5 and 208.2 °C, respectively. NDTAP presents good thermal stability and is insensitive.  相似文献   

19.
Well‐defined polymer‐Mg(OH)2 nanocomposites were prepared by atom transfer radical polymerization (ATRP). The ATRP initiators were covalently attached to the Mg(OH)2 by esterification of 2‐chloropropionyl chloride with hydroxyl group. The amount of polymer grafted from Mg(OH)2 can be controlled using a different catalyst system and adding a small amount of polar solvent. The well‐defined diblock copolymer, consisting of poly(styrene) (PS) and poly(methyl methacrylate) (PMMA) were synthesized. The products were characterized by nuclear magnetic resonance, Fourier transform infrared, differential scanning calorimetry, and thermal gravimetric analysis. The morphologies of PS/PMMA and PS/PMMA/Mg(OH)2g‐PS‐b‐PMMA blends are compared by using a scanning electron microscope. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3680–3687, 2007  相似文献   

20.
Highly efficient syntheses of indolo[2,1‐a]isoquinolines, indolo[2,1‐a][2]benzazepines, pyrrolo[2,1‐a]isoquinolines and pyrrolo[1,2‐a]benzazepines in excellent yields have been achieved by the intramolecular photochemical cross‐coupling reactions of 3‐acyl‐2‐halo‐N‐(ω‐arylalkyl)indoles and 2‐chloro‐N‐(ω‐arylalkyl)pyrrole‐3‐carbaldehydes in acetone. A new heterocyclic ring system – pyrrolo[1,2‐d][1,4]benzoxazepine – has also been constructed for the first time in this work by the photocyclization of 2‐chloro‐N‐(2‐phenoxyethyl)pyrrole‐3‐carbaldehyde.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号