首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the synthesis of metallocene compounds Cp2M with two different electron‐withdrawing substituents on both cyclopentadienyl rings (hexafluoroacetone (HFA) and chlorobenzoyl ( 1 – 5 ); HFA and COOH ( 6 and 7 ), M=Fe or Ru). The COOH‐containing derivatives were used to synthesize peptide bioconjugates with enkephalin ( 8 and 9 ) and neurotensin ( 10 and 11 ) as well as fluorescein‐labeled neurotensin ( 12 ). All the molecules were fully characterized, including X‐ray structures for 6 and 7 . The physicochemical properties (lipophilicity and electrochemistry) and cytotoxicity on MCF‐7, HT‐29, and PT‐45 cancer cells were evaluated for selected compounds. Electrochemical investigation by cyclic voltammetry revealed that all bis‐substituted metallocenes are up to 300 mV harder to oxidize compared to the monosubstituted 2‐ferrocenylhexafluoropropan‐2‐ol (FcHFA: Δ${E{{{\rm f}\hfill \atop 0\hfill}}}$ =214 mV; disubstituted derivatives: up to Δ${E{{{\rm f}\hfill \atop 0\hfill}}}$ =512 mV; both vs. FcH0/+). For the bis‐substituted compounds, log P determinations by RP‐HPLC showed increased lipophilicity in comparison to the monosubstituted FcHFA and RcHFA. Cellular uptake was investigated by fluorescence microcopy, and this revealed endosomal entrapment for 12 .  相似文献   

2.
3.
A structure–activity relationship (SAR) study of the triosmium carbonyl cluster Os3(CO)10(NCCH3)2 was carried out with a series of clusters of the general formula Os3(CO)12?nLn, cationic osmium clusters and a hemi‐labile maltolato‐Os cluster. The SAR results showed that good solubility in DMSO and at least one vacant site are required for cytotoxicity. In vitro evaluation of these new compounds showed that some are selectively active against estrogen receptor (ER)‐independent MDA‐MB‐231 breast cancer cell lines relative to ER‐dependent MCF‐7 breast cancer cells, suggesting that the compounds have a different biological target specific to MDA‐MB‐231 cells. In particular, the maltolato cluster exhibits strong antiproliferative activity, with an IC50 value of 3 μM after only 24 h incubation. Additionally, biochemical assays conducted with the cationic cluster show that it induces apoptosis, although a biological target has not yet been identified. Further research to establish the molecular targets of these compounds and to develop improved organometallic clusters as potential breast cancer therapeutics is underway.  相似文献   

4.
Pharmacological treatment of Chagas disease is based on benznidazole, which displays poor efficacy when administered during the chronic phase of infection. Therefore, the development of new therapeutic options is needed. This study reports on the structural design and synthesis of a new class of anti‐Trypanosoma cruzi thiazolidinones ( 4 a – p ). (2‐[2‐Phenoxy‐1‐(4‐bromophenyl)ethylidene)hydrazono]‐5‐ethylthiazolidin‐4‐one ( 4 h ) and (2‐[2‐phenoxy‐1‐(4‐phenylphenyl)ethylidene)hydrazono]‐5‐ethylthiazolidin‐4‐one ( 4 l ) were the most potent compounds, resulting in reduced epimastigote proliferation and were toxic for trypomastigotes at concentrations below 10 μM , while they did not display host cell toxicity up to 200 μM . Thiazolidinone 4 h was able to reduce the in vitro parasite burden and the blood parasitemia in mice with similar potency to benznidazole. More importantly, T. cruzi infection reduction was achieved without exhibiting mouse toxicity. Regarding the molecular mechanism of action, these thiazolidinones did not inhibit cruzain activity, which is the major trypanosomal protease. However, investigating the cellular mechanism of action, thiazolidinones altered Golgi complex and endoplasmic reticulum (ER) morphology, produced atypical cytosolic vacuoles, as well as induced necrotic parasite death. This structural design employed for the new anti‐T. cruzi thiazolidinones ( 4 a – p ) led to the identification of compounds with enhanced potency and selectivity compared to first‐generation thiazolidinones. These compounds did not inhibit cruzain activity, but exhibited strong antiparasitic activity by acting as parasiticidal agents and inducing a necrotic parasite cell death.  相似文献   

5.
This work shows how the introduction of an organometallic group enhances and modifies the specificity of biologically active peptides. Ferrocene was chosen as an organometallic group because it has been shown to alter the pharmacodynamic profile of bioactive compounds. A comparison with the isosteric cobaltocenium group allows one to explore the influence of charge and redox potential on the biological activity of the conjugates. Arginine and tryptophan containing peptides H-WRWRWR-NH(2) and H-RWRWRW-NH(2) and the metallocene peptide bioconjugates [M]-C(O)-RWRWR-NH(2) and [M]-C(O)-WRWRW-NH(2), where [M]=[Co(Cp)(C(5)H(4))](+), [Fe(Cp)(C(5)H(4))] were prepared by solid-phase peptide synthesis (SPPS). They were purified by HPLC, characterized by ESIMS and NMR spectroscopy, and tested for antibacterial properties against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus using the minimum inhibitory concentration (MIC) test. In most cases, no metal-specific activity could be observed. However, the conjugate [Fe(Cp)(C(5)H(4))-C(O)-WRWRW-NH(2)] 6 was found to be particularly effective against the Gram-positive S. aureus. The activity of this metallocene-pentapeptide conjugate (7.1 microM) was even better than the 20 amino acid naturally occurring pilosulin 2, which was used as a positive control. Unlike all other compounds tested, which were most active against the Gram-negative E. coli strain, the ferrocene conjugate 6 was the only compound in this series that was most active against Gram-positive bacteria. Given the health concerns resulting from multidrug resistant S. aureus strains, the incorporation of metallocenes may provide a novel line of attack.  相似文献   

6.
The application of ab initio, density functional theory and molecular mechanical methods to the modelling of metallocenes, particularly ferrocene, is reviewed. Approaches to the representation of the metal‐ring π‐bonding in molecular mechanics and the quality of computed results from ab initio and density functional theory serve to illustrate the utility of modelling studies in organometallic chemistry. © 1999 Society of Chemical Industry  相似文献   

7.
Cyanobacterial cyclopeptides : A series of analogues of the cyanobacterial cyclopeptide brunsvicamide A was prepared by effective solid‐support‐based total synthesis. Variations in stereochemistry revealed the importance of the D ‐lysine and the L ‐isoleucine residues for the substrate‐competitive inhibitory activity of brunsvicamide A against carboxypeptidase A.

  相似文献   


8.
Radiolabeled derivatives of the peptide neurotensin (NT) and its binding sequence NT(8–13) have been studied as potential imaging probes and therapeutics for NT‐1‐receptor‐positive cancer. However, a direct comparison of reported NT analogues, even if radiolabeled with the same radionuclide, is difficult because different techniques and models have been used for preclinical evaluations. In an effort to identify a suitable derivative of NT(8–13) for radiotracer development, we herein report a side‐by‐side in vitro comparison of radiometallated NT derivatives bearing some of the most commonly reported amino acid substitutions in their sequence. Performed investigations include cell internalization experiments, determinations of receptor affinity, measurements of the distribution coefficient, and blood serum stability studies. Of the [177Lu]‐1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetic acid (DOTA)‐labeled examples studied, analogues of NT(8–13) containing a short hydrophilic tetraethylene glycol (PEG4) spacer between the peptide and the radiometal complex, and a minimum number of substitutions of amino acid residues, exhibited the most promising properties in vitro.  相似文献   

9.
The potent antitumor activity of 1‐O‐hexadecyl‐2‐O‐methyl‐3‐O‐(2′‐amino‐2′‐deoxy‐β‐D ‐glucopyranosyl)‐sn‐glycerol ( 1 ) was previously shown to arise through an apoptosis‐independent pathway. Here, a systematic structure–activity study in which the effects of the anomeric linkage, the cationic charge and the glycero moiety on the antitumor activity is described. Eight analogues of 1 were synthesized, and their antitumor activity against breast (JIMT1 and BT549), pancreas (MiaPaCa2) and prostate (DU145, PC3) cancer was determined. 1‐O‐Hexadecyl‐2‐O‐methyl‐3‐O‐(2′‐amino‐2′‐deoxy‐α‐D ‐glucopyranosyl)‐sn‐glycerol ( 2 ) consistently displayed the most potent activity against all five cell lines with CC50 values in the range of 6–10 μM . However, replacement of the O‐glycosidic linkage by a thioglycosidic linkage or replacement of the amino group by an azide or guanidino group leads to a threefold or greater decrease in potency. The glycero moiety also contributes to the overall activity of 1 and 2 but its effects are of lesser importance. Investigation into the mode of action of this class of compounds revealed that, in agreement with previous findings, the cytotoxic effects arise through induction of large acid vacuoles.  相似文献   

10.
11.
Previously reported pyrrolones, such as TDR32570, exhibited potential as antimalarial agents; however, while these compounds have potent antimalarial activity, they suffer from poor aqueous solubility and metabolic instability. Here, further structure–activity relationship studies are described that aimed to solve the developability issues associated with this series of compounds. In particular, further modifications to the lead pyrrolone, involving replacement of a phenyl ring with a piperidine and removal of a potentially metabolically labile ester by a scaffold hop, gave rise to derivatives with improved in vitro antimalarial activities against Plasmodium falciparum K1, a chloroquine‐ and pyrimethamine‐resistant parasite strain, with some derivatives exhibiting good selectivity for parasite over mammalian (L6) cells. Three representative compounds were selected for evaluation in a rodent model of malaria infection, and the best compound showed improved ability to decrease parasitaemia and a slight increase in survival.  相似文献   

12.
In recent years, DAPK‐related apoptosis‐inducing protein kinase 2 (DRAK2) has emerged as a promising target for the treatment of a variety of autoimmune diseases and for the prevention of graft rejection after organ transplantation. However, medicinal chemistry optimization campaigns for the discovery of novel small‐molecule inhibitors of DRAK2 have not yet been published. Screening of a proprietary compound library led to the discovery of a benzothiophene analogue that displays an affinity constant (Kd) value of 0.25 μM . Variation of the core scaffold and of the substitution pattern afforded a series of 5‐arylthieno[2,3‐b]pyridines with strong binding affinity (Kd=0.008 μM for the most potent representative). These compounds also show promising activity in a functional biochemical DRAK2 enzyme assay, with an IC50 value of 0.029 μM for the most potent congener. Selectivity profiling of the most potent compounds revealed that they lack selectivity within the DAPK family of kinases. However, one of the less potent analogues is a selective ligand for DRAK2 and can be used as starting point for the synthesis of selective and potent DRAK2 inhibitors.  相似文献   

13.
The cinnamamide scaffold has been incorporated in to the structure of numerous organic compounds with therapeutic potential. The scaffold enables multiple interactions, such as hydrophobic, dipolar, and hydrogen bonding, with important molecular targets. Additionally, the scaffold has multiple substitution options providing the opportunity to optimize and modify the pharmacological activity of the derivatives. In particular, cinnamamide derivatives have exhibited therapeutic potential in animal models of both central and peripheral nervous system disorders. Some have undergone clinical trials and were introduced on to the pharmaceutical market. The diverse activities observed in the nervous system included anticonvulsant, antidepressant, neuroprotective, analgesic, anti‐inflammatory, muscle relaxant, and sedative properties. Over the last decade, research has focused on the molecular mechanisms of action of these derivatives, and the data reported in the literature include targeting the γ‐aminobutyric acid type A (GABAA) receptors, N‐methyl‐D ‐aspartate (NMDA) receptors, transient receptor potential (TRP) cation channels, voltage‐gated potassium channels, histone deacetylases (HDACs), prostanoid receptors, opioid receptors, and histamine H3 receptors. Here, the literature data from reports evaluating cinnamic acid amide derivatives for activity in target‐based or phenotypic assays, both in vivo and in vitro, relevant to disorders of the central and peripheral nervous systems are analyzed and structure–activity relationships discussed.  相似文献   

14.
设计合成了一系列羟基黄酮类化合物,并利用熔点、红外光谱、核磁共振氢谱和质谱确定了其结构。以利阿唑为阳性对照药,对4个目标化合物7-羟基黄酮、6-羟基黄酮、2′-甲氧基-6-羟基黄酮和2′-氯-6-羟基黄酮的抗HL-60活性进行了研究,实验结果表明2′-甲氧基-6-羟基黄酮,2′-氯-6-羟基黄酮均有较好活性,其中以2′-甲氧基-6-羟基黄酮的活性最显著,其半数抑制剂量为7.68μmol/L,与利阿唑活性相当。  相似文献   

15.
The breast cancer resistance protein (BCRP/ABCG2) is a member of the ABC transporter superfamily. This protein has a number of physiological functions, including protection of the human body from xenobiotics. The overexpression of BCRP in certain tumor cell lines causes cross‐resistance against various drugs used in chemotherapeutic treatment. In a previous work we showed that a new class of compounds derived from XR9576 (tariquidar) selectively inhibits BCRP. In this work we synthesized more members of this class, with modification on the second and third aromatic rings. The inhibitory activities against BCRP and P‐gp were assayed using a Hoechst 33342 assay for BCRP and a calcein AM assay for P‐gp. Finally, quantitative structure–activity relationships for both aromatic rings were established. The results obtained show the importance of the electron density on the third aromatic ring, influenced by substituents, pointing to interactions with aromatic residues of the protein binding site. In the second aromatic ring the activity of compounds is influenced by the steric volume of the substituents.  相似文献   

16.
Functionalized oligoribonucleotides are essential tools in RNA chemical biology. Various synthetic routes have been developed over recent years to conjugate functional groups to oligoribonucleotides. However, the presence of the functional group on the oligoribonucleotide backbone can lead to partial or total loss of biological function. The limited knowledge concerning the positioning of functional groups therefore represents a hurdle for the development of oligoribonucleotide chemical tools. Here we describe a systematic investigation of site‐specific labeling of pre‐miRNAs to identify positions for the incorporation of functional groups, in order not to hinder their processing into active mature miRNAs.  相似文献   

17.
(3S,4R)‐23,28‐Dihydroxyolean‐12‐en‐3‐yl (2E)‐3‐(3,4‐dihydroxyphenyl)acrylate ( 1 a ), which possesses significant neuritogenic activity, was isolated from the traditional Chinese medicine (TCM) plant, Desmodium sambuense. To confirm the structure and to assess biological activity, we semi‐synthesized 1 a from commercially available oleanolic acid. A series of novel 1 a derivatives was then designed and synthesized for a structure–activity relationship (SAR) study. All synthetic derivatives were characterized by analysis of spectral data, and their neuritogenic activities were evaluated in assays with PC12 cells. The SAR results indicate that the number and position of the hydroxy groups on the phenyl ring and the triterpene moiety, as well as the length of the (saturated or unsaturated) alkyl chain that links the phenyl ring with the triterpene critically influence neuritogenic activity. Among all the tested compounds, 1 e [(3S,4R)‐23,28‐dihydroxyolean‐12‐en‐3‐yl (2E)‐3‐(3,4,5‐trihydroxyphenyl)acrylate] was found to be the most potent, inducing significant neurite outgrowth at 1 μm .  相似文献   

18.
19.
Dengue is a systemic viral infection that is transmitted to humans by Aedes mosquitoes. No vaccines or specific therapeutics are currently available for dengue. Lycorine, which is a natural plant alkaloid, has been shown to possess antiviral activities against flaviviruses. In this study, a series of novel lycorine derivatives were synthesized and assayed for their inhibition of dengue virus (DENV) in cell cultures. Among the lycorine analogues, 1‐acetyllycorine exhibited the most potent anti‐DENV activity (EC50=0.4 μM ) with a reduced cytotoxicity (CC50>300 μM ), which resulted in a selectivity index (CC50/EC50) of more than 750. The ketones 1‐acetyl‐2‐oxolycorine (EC50=1.8 μM ) and 2‐oxolycorine (EC50=0.5 μM ) also exhibited excellent antiviral activities with low cytotoxicity. Structure–activity relationships for the lycorine derivatives against DENV are discussed. A three‐dimensional quantitative structure–activity relationship model was established by using a comparative molecular‐field analysis protocol in order to rationalize the experimental results. Further modifications of the hydroxy group at the C1 position with retention of a ketone at the C2 position could potentially lead to inhibitors with improved overall properties.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号