首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Composites of polyaniline in its emeraldine base form (PANI‐EB) and photo‐acid generators (PAG) show an increase in conductivity upon photo‐irradiation due to the protonation of PANI‐EB. Such materials may be utilized to fabricate conducting patterns by photo‐irradiation. However, the conductivity obtained by direct irradiation of PANI‐EB/PAG composites was normally quite low (<10?3 S/cm) due to aggregation of highly loaded PAG. In this work, poly(ethylene glycol) (PEG), which is a proton transfer polymer, was added to PANI‐EB/PAG. Results showed that addition of low Mw (550) PEG significantly enhance the photo‐induced conductivity. Conductivities as high as 10?1–100 S/cm were observed after photo‐irradiation. This conductivity is comparable to that of PANI‐salt synthesized by oxidizing aniline in the presence of an acid. High Mw (8000) PEG is much less effective than PEG 550, which is attributed to its lower compatibility with PANI. PEG‐grafted PANI (N‐PEG‐PANI) was also studied as an additive. Composites of PANI‐EB and N‐PEG‐PANI showed conductivity as high as 102 S/cm after treatment with HCl vapor. The photo‐induced conductivity of the N‐PEG‐PANI/PANI‐EB/PAG composite reached 10?2–10?1 S/cm. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

2.
Recent studies have shown that a 20 % trans,trans conjugated linoleic acid (CLA)‐rich soy oil significantly reduces heart disease and diabetes risk factors in obese rats. Furthermore, trans,trans‐CLA has been reported to have superior anti‐carcinogenic activity than other CLA isomers. Therefore, a more concentrated source of trans,trans‐CLA oil would be highly desirable. The objectives of this study were to (1) determine the yield of trans,trans‐CLA isomers resulting from photo‐irradiation of Tonalin® (BASF Global, Florham Park, NJ, USA) and identify trans,trans‐CLA positional isomers; and (2) derive a mathematical model of kinetics of trans,trans‐CLA TAG formation from Tonalin®. Fifty‐five percent trans,trans‐CLA rich oil was obtained in about 140 min when Tonalin® was photo‐isomerized with 0.35 % iodine, which is almost three times more than is possible with photo‐isomerized soy oil. Photo‐isomerization of Tonalin® requires about 2 h, compared to 12 h for photo‐isomerization of soy oil. This reaction is a first‐order reversible reaction with the forward rate constant (kf) = 13.17 × 10?3min?1 and backward rate constant (kb) = 5.334 × 10?3min?1. The major isomers identified were trans‐9,trans‐11‐ and trans‐10,trans‐12‐CLA.  相似文献   

3.
The key to improving the performance of dye‐sensitized solar cells is the photo‐anode that has much dye adsorption and short optoelectronic transmission path. Electrospun TiO2 films in photo‐anode have high specific surface area and meet the demand exactly. The article summarizes these efforts in TiO2 photo‐anode improvement, including various morphology, different one‐dimensional and two‐dimensional composite structure, and varied element doped TiO2 photo‐anode. Besides, the review makes comparison with these different TiO2 photo‐anodes in photoelectric properties. The conclusions provide a clear guidance in design of morphology, structure, and doping, which is helpful for researcher to improve the performance of the anode and increase the photoelectric conversion efficiency especially those prepared using electrospinning. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45649.  相似文献   

4.
In Arabidopsis thaliana, RNase P function, that is, endonucleolytic tRNA 5′‐end maturation, is carried out by three homologous polypeptides (“proteinaceous RNase P” (PRORP) 1, 2 and 3). Here we present the first kinetic analysis of these enzymes. For PRORP1, a specificity constant (kreact/Km(sto)) of 3×106 M ?1 min?1 was determined under single‐turnover conditions. We demonstrate a fundamentally different sensitivity of PRORP enzymes to an Rp‐phosphorothioate modification at the canonical cleavage site in a 5′‐precursor tRNA substrate; whereas processing by bacterial RNase P is inhibited by three orders of magnitude in the presence of this sulfur substitution and Mg2+ as the metal‐ion cofactor, the PRORP enzymes are affected by not more than a factor of five under the same conditions, without significantly increased miscleavage. These findings indicate that the catalytic mechanism utilized by proteinaceous RNase P is different from that of RNA‐based bacterial RNase P, taking place without a direct metal‐ion coordination to the (pro‐)Rp substituent. As Rp‐phosphorothioate and inosine modification at all 26 G residues of the tRNA body had only minor effects on processing by PRORP, we conclude that productive PRORP–substrate interaction is not critically dependent on any of the affected (pro‐)Rp oxygens or guanosine 2‐amino groups.  相似文献   

5.
In this study, a highly efficient photo‐initiator system was developed, which contained potassium persulfate, N, N, N ′, N ′‐tetramethylethylethylenediamine plus benzil dimethyl ketal. The photo‐initiator system could successfully initiate poly (ethylene glycol) dimethyl‐acrylate prepolymer to polymerize and crosslink under the irradiation of UV rays, in the presence of concentrated activated sludge, finally leading to the formation of immobilized activate sludge pellet beads. The presence of O2 and thickness of the reaction solution did not influence the photo‐immobilization process. Respiratory measurement result demonstrated that most activated sludge kept alive during the photo‐immobilization. Mechanical strength of the immobilized cells could be improved by optimizing contents and ratio of the initiator system. The corresponding mechanism was also discussed. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39838.  相似文献   

6.
A new method has been developed to reassign the rare codon AGA in Escherichia coli by engineering an orthogonal tRNA/aminoacyl–tRNA synthetase pair derived from Methanocaldococcus jannaschii. The tRNA mutant was introduced with a UCU anticodon, and the synthetase was evolved to correctly recognize the modified tRNA anticodon loop and to selectively charge a target noncanonical amino acid (NAA) onto the tRNA. In order to maximize the efficiency of AGA codon reassignment, while avoiding the lethal effects caused by global codon reassignment in cellular proteins, an inducible promoter (araBAD) was utilized to provide temporal controls for overexpression of the aminoacyl–tRNA synthetase and switch on codon reassignment. Using this system, we were able to efficiently incorporate p‐acetylphenylalanine, O‐methyl‐tyrosine, and p‐iodophenylalanine into proteins in response to AGA codons. Also, we found that E. coli strain GM10 was optimal in achieving the highest AGA reassignment rates. The successful reassignment of AGA codons reported here provides a new avenue to further expand the genetic code.  相似文献   

7.
Philanthotoxin‐433 (PhTX‐433) is a known potent inhibitor of ionotropic glutamate receptors, and analogues have been synthesised to identify more potent and selective antagonists. Herein we report the synthesis of four PhTXs with a cyclopropane moiety introduced into their polyamine chain, and their inhibition of an α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid (AMPA) receptor subtype by using two‐electrode voltage‐clamp assays on Xenopus oocytes expressing the GluA1flop subunit. All analogues were found to be more potent than PhTX‐343, with trans‐cyclopropyl‐PhTX‐343 being the most potent (~28‐fold) and cis‐cyclopropyl‐PhTX‐343 least potent (~4‐fold). Both cis‐ and trans‐cyclopropyl‐PhTX‐444 had intermediate potency (both ~12‐fold). Molecular modelling indicates that a cyclopropane moiety confers a favourable steric constraint to the polyamine part, but this is compromised by a cis conformation due to enhanced intramolecular folding. Elongated PhTX‐444 analogues alleviate this to some extent, but optimal positioning of the amines is not permitted.  相似文献   

8.
Photo‐induced atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) was achieved in poly(ethylene glycol)‐400 with nanosized α‐Fe2O3 as photoinitiator. Well‐defined poly(methyl methacrylate) (PMMA) was synthesized in conjunction with ethyl 2‐bromoisobutyrate (EBiB) as ATRP initiator and FeCl3·6H2O/Triphenylphosphine (PPh3) as complex catalyst. The photo‐induced polymerization of MMA proceeded in a controlled/living fashion. The polymerization followed first‐order kinetics. The obtained PMMA had moderately controlled number‐average molecular weights in accordance with the theoretical number‐average molecular weights, as well as narrow molecular weight distributions (Mw/Mn). In addition, the polymerization could be well controlled by periodic light‐on–off processes. The resulting PMMA was characterized by 1H nuclear magnetic resonance and gel permeation chromatography. The brominated PMMA was used further as macroinitiator in the chain‐extension with MMA to verify the living nature of photo‐induced ATRP of MMA. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42389.  相似文献   

9.
BACKGROUND: Chlorella strains rather than terrestrial oil crops having higher oil content and shorter generation time have been considered as promising candidates for alternative biodiesel. Since the influence of light quality on oil formation of microalgae in either monoculture or mixed culture has been shown to be either inconsistent or ambiguous, a light‐emitting diode (LED) photo‐bioreactor with different light sources and intensities was used in this study to investigate a cost‐effective lipid production process. RESULTS: The oil accumulation in a mixed culture of Chlorella sp. and Saccharomyces cerevisiae was higher than that in the monoculture under the different light sources used. Results of the influence of light quality on the mixed culture indicated that the optimal light wavelength and intensity for biomass formation was red LED light at 1000 lux, whereas the optimum for oil formation was blue LED light at 1000 lux. A novel two‐stage LED photo‐bioreactor was thus proposed and the highest Pmax and productivity in this study were obtained as 261 mg L?1 and 8.16 mg L?1 h?1, respectively. CONCLUSION: A novel two‐stage LED photo‐bioreactor using a mixed culture to optimize microalgal oil production was proposed and successfully demonstrated in this study. Copyright © 2011 Society of Chemical Industry  相似文献   

10.
Hyperbranched polycarbosiloxanes with peripheral photo‐crosslinkable groups were synthesized through controllable hydrosilylation reaction from A2‐type and CB3‐type monomers. The polymerization of the monomer pairs was monitored using Fourier transform infrared spectroscopy, from which it was found that vinyl silane and methacrylate groups reacted with hydride silane from the beginning of the reaction. The results thus suggest a step‐by‐step polymerization rather than a two‐step process for this system. The polycarbosiloxanes could be cured rapidly in either nitrogen or air atmosphere, this feature making them attractive for potential application as precursors of advanced ceramic devices with complex structures. The effects of light intensity, reaction temperature and atmosphere on the UV curing rate (Rp) and conversion (α) of the photo‐crosslinkable groups were characterized carefully, and the curing kinetics was also investigated systematically. The results show that Rp and α increased with an increase of light intensity or temperature, and that the inhibiting effect of oxygen in air could be suppressed by enhancing the irradiation intensity. Copyright © 2010 Society of Chemical Industry  相似文献   

11.
The 5‐substituted 2‐thiouridines (R5S2Us) present in the first (wobble) position of the anticodon of transfer RNAs (tRNAs) contribute to accuracy in reading mRNA codons and tuning protein synthesis. Previously, we showed that, under oxidative stress conditions in vitro, R5S2Us were sensitive to hydrogen peroxide (H2O2) and that their oxidative desulfuration produced 5‐substituted uridines (R5Us) and 4‐pyrimidinone nucleosides (R5H2Us) at a ratio that depended on the pH and an R5 substituent. Here, we demonstrate that the desulfuration of 2‐thiouridines, either alone or within an RNA/tRNA chain, is catalyzed by cytochrome c (cyt c). Its kinetics are similar to those of Fenton‐type catalytic 2‐thiouridine (S2U) desulfuration. Cyt c/H2O2‐ and FeII‐mediated reactions deliver predominantly 4‐pyrimidinone nucleoside (H2U)‐type products. The pathway of the cyt c/H2O2‐peroxidase‐mediated S2U→H2U transformation through uridine sulfenic (U‐SOH), sulfinic (U‐SO2H), and sulfonic (U‐SO3H) intermediates is confirmed by LC–MS. The cyt c/H2O2‐mediated oxidative damage of S2U‐tRNA may have biological relevance through alteration of the cellular functions of transfer RNA.  相似文献   

12.
Bio‐based compounds (FmHPM and FdHPM) with a furan backbone and photo‐polymerizable 2‐hydroxypropyl methacrylate (HPM) group(s) were synthesized from carbohydrate‐derived furanyl alcohols (furan‐2‐methanol and furan‐2,5‐dimethanol) and their photo‐polymerizing behaviors and mechanical properties after photo‐polymerization were investigated. Half time values (t1/2) of bio‐based FmHPM and FdHPM were 10.4 s and 3.0 s and their shrinkage ratios were 3.0 and 6.1% during photo‐polymerization, respectively. Tensile‐shear strength of glass and polycarbonate joints bonded by bio‐based furanic compounds appeared in range of 0.2–0.6 MPa and pencil hardness of film coated by bio‐based furanic compounds after photo‐polymerization showed 2H–3H. Newly synthesized bio‐based furanic compounds allowed the feasibility to alternate petroleum‐based Bis‐GMA/TEGDMA, photo‐polymerizable composition widely utilized in a variety of applications. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

13.
Nanocrystalline ZnO (nc‐ZnO) thin‐film transistors (TFTs) exhibit inherent instability under bias/photo stresses, which originates from the oxygen molecules adsorbed on the surface of the crystal grains. The space charge region at nanocrystal surfaces that is induced by adsorbed oxygen molecules produces a high electrical potential barrier and significantly interrupts charge transport between the source and drain in nc‐ZnO TFTs. In this article, we developed high‐performance TFTs via the continuous deposition of an extremely thin Al2O3 layer on a nc‐ZnO channel. These devices were fabricated by atomic layer deposition at an extremely low process temperature of 150°C, including both the deposition and postannealing temperatures. The nc‐ZnO TFT with an extremely thin Al2O3 layer (1.8 nm) showed a significantly higher mobility (25 cm2/Vs) compared to devices without an Al2O3 layer (3.6 cm2/Vs). This dramatic difference was ascribed to the suppression of the chemisorption of oxygen molecules at the nanocrystal surface during thermal annealing (reducing the potential barrier width/height between adjacent nanocrystals). Furthermore, ultrathin Al2O3‐covered nc‐ZnO TFTs exhibited considerably enhanced electrical/photo stability due to the reduction in adsorption/desorption events of oxygen molecules on the nanocrystal surfaces (with no change in the depletion width after illumination) under gate bias or illumination stress.  相似文献   

14.
Solvents and electrolytes play an important role in the fabrication of dye‐sensitized solar cells (DSSCs). We have studied the poly(ethylene oxide)‐poly(methyl methacrylate)‐KI‐I2 (PEO‐PMMA‐KI‐I2) polymer blend electrolytes prepared with different wt % of the 2‐mercaptopyridine by solution casting method. The polymer electrolyte films were characterized by the FTIR, X‐ray diffraction, electrochemical impedance and dielectric studies. FTIR spectra revealed complex formation between the PEO‐PMMA‐KI‐I2 and 2‐mercaptopyrindine. Ionic conductivity data revealed that 30% 2‐mercaptopyridine‐doped PEO‐PMMA‐KI‐I2 electrolyte can show higher conductivity (1.55 × 10?5 S cm?1) than the other compositions (20, 40, and 50%). The effect of solvent on the conductivity and dielectric of solid polymer electrolytes was studied for the best composition (30% 2‐mercaptopyridine‐doped PEO‐PMMA‐KI‐I2) electrolyte using various organic solvents such as acetonitrile, N,N‐dimethylformamide, 2‐butanone, chlorobenzene, dimethylsulfoxide, and isopropanol. We found that ac‐conductivity and dielectric constant are higher for the polymer electrolytes processed from N,N‐dimethylformamide. This observation revealed that the conductivity of the solid polymer electrolytes is dependent on the solvent used for processing and the dielectric constant of the film. The photo‐conversion efficiency of dye‐sensitized solar cells fabricated using the optimized polymer electrolytes was 3.0% under an illumination of 100 mW cm?2. The study suggests that N,N‐dimethylformamide is a good solvent for the polymer electrolyte processing due to higher ac‐conductivity beneficial for the electrochemical device applications. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42489.  相似文献   

15.
PMMA and PMMA films doped with different contents of azo dye have been made by using the casting technique. The absorption spectral analysis showed that the doped films have two absorption bands attributed to the π‐π* and n‐π* transition of chromophore groups. These bands disappear upon UV‐irradiation, suggesting that the studied system undergoes a photo degradation process. The absorption coefficient and optical energy gap (Eg) have been obtained from the absorption edge in the 200–900 nm range. It was found that Eg decreases with increasing doping levels, whereas it increases with increasing irradiation time. The width of the tail of localized states in the band gap (ΔE) was evaluated using the Urbach edge method. Some optical parameters were determined from the reflection and transmission spectra in the spectral range of 200–2500 nm. The dependence of the refractive index on irradiation time and doping level have been discussed. It was found that the photo‐induced refractive index changes are very large. These changes suggest the applicability of the studied system in optical devices. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
Intrinsically disordered regions (IDRs) are preferred sites for post‐translational modifications essential for regulating protein function. The enhanced local mobility of IDRs facilitates their observation by NMR spectroscopy in vivo. Phosphorylation events can occur at multiple sites and respond dynamically to changes in kinase–phosphatase networks. Here we used real‐time NMR spectroscopy to study the effect of kinases and phosphatases present in Xenopus oocytes and egg extracts on the phosphorylation state of the “unique domain” of c‐Src. We followed the phosphorylation of S17 in oocytes, and of S17, S69, and S75 in egg extracts by NMR spectroscopy, MS, and western blotting. Addition of specific kinase inhibitors showed that S75 and S69 are phosphorylated by CDKs (cyclin‐dependent kinases) differently from Cdk1. Moreover, although PKA (cAMP‐dependent protein kinase) can phosphorylate S17 in vitro, this was not the major S17 kinase in egg extracts. Changes in PKA activity affected the phosphorylation levels of CDK‐dependent sites, thus suggesting indirect effects of kinase–phosphatase networks. This study provides a proof‐of‐concept of the use of real‐time in vivo NMR spectroscopy to characterize kinase/phosphatase effects on intrinsically disordered regulatory domains.  相似文献   

17.
Aminoacyl‐tRNA synthetases (aaRSs) play essential roles in protein synthesis. As a member of the aaRS family, the tyrosyl‐tRNA synthetase (TyrRS) in Escherichia coli has been shown in proteomic studies to be acetylated at multiple lysine residues. However, these putative acetylation targets have not yet been biochemically characterized. In this study, we applied a genetic‐code‐expansion strategy to site‐specifically incorporate N?‐acetyl‐l ‐lysine into selected positions of TyrRS for in vitro characterization. Enzyme assays demonstrated that acetylation at K85, K235, and K238 could impair the enzyme activity. In vitro deacetylation experiments showed that most acetylated lysine residues in TyrRS were sensitive to the E. coli deacetylase CobB but not YcgC. In vitro acetylation assays indicated that 25 members of the Gcn5‐related N‐acetyltransferase family in E. coli, including YfiQ, could not acetylate TyrRS efficiently, whereas TyrRS could be acetylated chemically by acetyl‐CoA or acetyl‐phosphate (AcP) only. Our in vitro characterization experiments indicated that lysine acetylation could be a possible mechanism for modulating aaRS enzyme activities, thus affecting translation.  相似文献   

18.
The low‐temperature ultraviolet (UV) irradiation equipment, developed in our Lab, was used to study the photo‐aging of poly (vinyl chloride) (PVC) films at low temperature. The color change kinetics and corresponding structure development of PVC film during low‐temperature UV aging were studied through L*a*b* coordinates Commission International d' Eclau‐age (CIE 1976 color space) and Ultraviolet spectrophotometer (UV–vis) and Fourier transform infrared spectroscopy (FTIR). It was found that the yellowness difference (?b*) and color difference (?E*) of the PVC film increased almost linearly with the aging time. Their values had a slower change at lower temperature. The kinetic study showed that the relationship between the velocity of coloration of the PVC film and the temperature agreed well with Arrhenius equation at low temperature. The activation energy of coloration of the PVC film was calculated. The FTIR spectra indicated that photo‐dehydrochloration, resulting in the generation of conjugated carbon–carbon double bonds, was the main reaction for PVC during photo‐aging at low temperature. Meanwhile, the photo‐oxidation was also obvious and could not be neglected. It clearly confirmed that the absorption peaks of conjugated carbon–carbon double bond increased and shifted to longer wavelength during photo‐aging in the UV‐abs analysis. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

19.
Polymers containing azobenzene groups have the characteristic reaction of photo‐induced cis–trans isomerism. The study of new materials for optical information storage has prompted making use of these photo‐isomerizations. In this study, we report the syntheses and properties of four different polyurethanes (DR‐PUns) containing azobenzene groups in the side‐chains. The structurally similar polyurethanes (DR‐PUns) were synthesized by the polycondensation reaction of Disperse Red 19 (DR 19) and four different diisocyanates in dimethylformamide. By introducing of DR 19 into the polymer, we obtained polymers containing a photochromic group in the side‐chain. The weight‐average molecular weights of the DR‐PUns were in the range 5500–12 900. The Tgs of the DR‐PUns range from 119.5 °C to 157.0 °C, depending on the structure of the diisocyanate. Optical properties and solubilities of the polyurethanes were compared. The diffraction efficiencies of films were measured as a function of the reaction time. Typically, the diffraction efficiencies of the DR‐PU1 film prepared from toluene 2,4‐diisocyanate were observed up to a level of 0.25%. For the DR‐PU1 film, the effect of the intensity of the induced laser beam on the diffraction efficiency is also discussed. © 2003 Society of Chemical Industry  相似文献   

20.
The photo‐oxidation behavior under natural and accelerated conditions of polypropylene/layered silicate nanocomposite is studied in this article. The nanocomposites are prepared via simple melt mixing (extrusion and injection molding). The structure obtained is very dependent on the preparation mode and the modified clay used; mostly, exfoliation structure is produced. The nanocomposites start their photo‐degradation earlier than the control samples polypropylene and polypropylene‐graft‐maleic anhydride with a higher oxidation rate for specimen produced by injection molding. This is explained by the presence of organiphilic‐modified montmorillonite layers that trap the oxygen, increasing the oxygen pressure in the bulk and leading to a decrease of the induction period. Contrary to the control samples that display auto acceleration in their oxidation kinetics, the nanocomposites show a slight tendency to a plateau indicating a slowing down of the photo‐oxidation process. This is ascribed to oxygen starvation that occurs in the nanocomposite. The acceleration factor is found to be higher for the nanocomposite comparatively of the control samples. With the aid of SF4 and NO treatments, the mechanism of photo degradation was found to be similar in PPgMA and its nanocomposites. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号