首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
The emergence of resistance to existing classes of antiretroviral drugs underlines the need to find novel human immunodeficiency virus (HIV)‐1 targets for drug discovery. The viral capsid protein (CA) represents one such potential target. Recently, a series of benzodiazepine inhibitors was identified via high‐throughput screening using an in vitro capsid assembly assay (CAA). Here, we demonstrate how a combination of NMR and X‐ray co‐crystallography allowed for the rapid characterization of the early hits from this inhibitor series. Ligand‐based 19F NMR was used to confirm inhibitor binding specificity and reversibility as well as to identify the N‐terminal domain of the capsid (CANTD) as its molecular target. Protein‐based NMR (1H and 15N chemical shift perturbation analysis) identified key residues within the CANTD involved in inhibitor binding, while X‐ray co‐crystallography confirmed the inhibitor binding site and its binding mode. Based on these results, two conformationally restricted cyclic inhibitors were designed to further validate the possible binding modes. These studies were crucial to early hit confirmation and subsequent lead optimization.  相似文献   

2.
Urinary tract infections caused by uropathogenic E. coli are among the most prevalent infectious diseases. The mannose‐specific lectin FimH mediates the adhesion of the bacteria to the urothelium, thus enabling host cell invasion and recurrent infections. An attractive alternative to antibiotic treatment is the development of FimH antagonists that mimic the physiological ligand. A large variety of candidate drugs have been developed and characterized by means of in vitro studies and animal models. Here we present the X‐ray co‐crystal structures of FimH with members of four antagonist classes. In three of these cases no structural data had previously been available. We used NMR spectroscopy to characterize FimH–antagonist interactions further by chemical shift perturbation. The analysis allowed a clear determination of the conformation of the tyrosine gate motif that is crucial for the interaction with aglycone moieties and was not obvious from X‐ray structural data alone. Finally, ITC experiments provided insight into the thermodynamics of antagonist binding. In conjunction with the structural information from X‐ray and NMR experiments the results provide a mechanism for the often‐observed enthalpy–entropy compensation of FimH antagonists that plays a role in fine‐tuning of the interaction.  相似文献   

3.
4.
5.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号