首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a half‐bridge resonant DC/DC converter with constant output voltage is proposed, which possesses good soft‐switching characteristics. At rated operating point, the switches can operate almost without switching‐on and off losses. Further, at whole working range, both zero‐voltage‐switching mode of switches and zero‐current‐switching mode of diodes are maintained. Thus, the converter can achieve a high efficiency. Experimental results verify the low switching losses and high efficiency characteristics based on a 200 W prototype. System efficiency is as high as 96% and always above 90% when output power changes from 100% to 20%. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
A new fast‐response buck converter using accelerated pulse‐width‐modulation techniques is proposed in this article. The benefits of the accelerated pulse‐width‐modulation technique is fast‐transient response, simple‐compensation design, and no requirement for slope compensation; furthermore, some power management problems are minimized, such as EMI (Electro Magnetic Interference), size, design complexity, and cost. The traditional voltage‐mode speed is slower with the transient response, so an accelerated pulse‐width‐modulation technique is used to solve the problem of slowed transient response in this article. The proposed buck converter has excellent conversion efficiency with a wide load conditions. The proposed buck converter has been fabricated with TSMC 0.35 µm CMOS 2P4M processes, and the total chip area is 1.32 × 1.22 mm2. Maximum output current is 300 mA when the output voltage equals 1.8 V. When the supply voltage is 3.6 V, the output voltage can be 1–2.6 V. Maximum transient response is less than 5 µs. The simulation and experimental results are presented in this article. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
A step‐up pulse width modulation (PWM) direct current (DC)–DC converter is presented in this paper, which has its origin in quasi Z‐source inverter. Analysis of this converter in steady state is presented, and relevant expressions are derived for the proposed converter operating in continuous conduction mode. The power loss expressions for each component of the converter are derived, and thereby, obtained expressions for overall converter efficiency are presented. Further, a dynamic model is derived to design an appropriate controller for this converter. The simulation and experimental results are presented to support the theoretical analysis. The advantages such as continuous input current, high step‐up gain at lower duty ratio, and common ground for source, load, and switch makes the converter suitable for renewable energy applications. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
An interleaved pulse‐width modulation (PWM) converter with less power switches is presented in this paper. The buck type of active clamp circuit is used to recycle the energy stored in the leakage inductor of a transformer. The zero voltage switching (ZVS) turn‐on of power switches is realized by the resonance during the transition interval of power switches. At the secondary side of transformers, two full‐wave rectifiers with dual‐output configuration are connected in parallel to reduce the current stresses of the secondary windings of transformers. In the proposed converter, power switches can accomplish two functions of the interleaved PWM modulation and active clamp feature at the same time. Therefore, the circuit components in the proposed converter are less than that of the conventional interleaved ZVS forward converter. The operation principle and system analysis of the proposed converter are provided in detail. Experimental results for a 280 W prototype operated at 100 kHz are provided to demonstrate the effectiveness of the proposed converter. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
The response of a digital Zero Average Dynamics (ZAD)‐controlled buck converter under the variation of its intrinsic parameters as well as the pulse‐width modulation signal is studied in detail. The multiparameter analysis presented here leads to a complete knowledge of the different dynamical scenarios exhibited by the system. Numerical results indicate that the success of the ZAD‐strategy is highly dependent on the parameter and pulse‐width modulation (PWM) combinations. Experiments are included to validate the performance inside the so‐called optimum region. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Bidirectional DC–DC converter with phase‐shift control is commonly used for hybrid electric vehicle and fuel‐cell vehicle applications. This converter is characterized by simple circuit topology and soft‐switching implementation without additional devices. Despite these advantages, the efficiency is poor at light load condition because of high switching and conduction losses caused by high RMS inductor current. To achieve zero‐voltage switching (ZVS) for all power MOSFETs, a constant offset inductor current is maintained to conduct the antiparallel body diodes before MOSFETs turn on. A control strategy of combining duty ratio and phase‐shift modulation is proposed to reach the constant offset current. By reaching the constant offset current, the RMS inductor current can be reduced significantly, and ZVS can be achieved in all load variation ranges, resulting in high efficiency. A 2.5‐kW prototype is implemented to verify the control scheme, and a minimum efficiency of 97.3% is achieved at light load condition. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
The dual active bridge (DAB)‐based isolated bidirectional converter has been used to realize bidirectional energy flow while offering needed isolation between the primary and secondary side: for example, the battery side and grid side of one plug‐in hybrid electric vehicle (PHEV). Even though the operation of a DAB‐based DC–DC converter is straightforward, various transient processes exist, such as the dead‐band effect, which deeply affects the dynamic performance of the converter in real world applications. Compensation of this effect is not easy because of the strong nonlinearity of the entire system. This paper quantitatively analyzed the dead‐band effect at different output powers, and presented a model‐based controller to realize the nonlinear dead‐band compensation strategy, which can effectively mitigate demerits of the traditional PI‐based control strategy. The proposed control algorithm is validated through theoretical simulation and experimental results. © 2011 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

8.
A switch‐mode boost DC–DC converter has been developed to compensate for the IR‐drop because of the finite resistance of a charging cable. The boost ratio of the DC–DC converter is adaptively controlled by an IR‐drop sensing circuit to provide the required voltage level to a battery charger regardless of the cable resistance. Implemented in a 0.18 µm BCDMOS process, the IR‐drop compensating switch‐mode boost DC–DC converter occupies 6.2 mm2 active area and shows the 93.2% peak efficiency. The proposed IR‐drop compensating boost converter can be applied to compensate for the IR‐drop of any type of charging cables. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
This paper proposes a novel zero‐current‐switching series resonant high‐voltage DC–DC converter with reduced component count. The series resonant inverter in the proposed topology has two power switches (insulated‐gate bipolar transistors, IGBTs), two resonant capacitors, and only one high‐voltage transformer (HVT) with center‐tapped primary windings. The power switches are connected in the form of a half‐bridge network. The leakage inductances of the transformer's primary windings together with the resonant capacitors form two series resonant circuits. The series resonant circuits are fed alternately by operating the power switches with interleaved half switching cycle. The secondary winding of the HVT is connected to a bridge rectifier circuit to rectify the secondary voltage. The converter operates in the discontinuous conduction mode (DCM) and its output voltage is regulated by pulse frequency modulation. Therefore, all the power switches turn on and off at the zero‐current switching condition. The main features of the proposed converter are its lower core loss, lower cost, and smaller size compared to previously proposed double series resonant high voltage DC–DC converters. The experimental results of a 130‐W prototype of the proposed converter are presented. The results confirm the excellent operation and performance of the converter. © 2016 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

10.
This paper proposed a novel high step‐up converter with double boost paths. The circuit uses two switches and one double‐path voltage multiplier cell to own the double boost and interleaved effects simultaneously. The voltage gain ratio of the proposed DC‐DC converter can be three times the ratio of the conventional boost converter such that the voltage stress of the switch can be lower. The high step‐up performance is in accordance with only one double‐path voltage multiplier cell. Therefore, the number of diodes and capacitors in the proposed converter can be reduced. Furthermore, the interleaved property of the proposed circuit can reduce the losses in the rectifier diode and capacitor. The prototype circuit with 24‐V input voltage, 250‐V output voltage, and 150‐W output power is experimentally realized to verify the validity and effectiveness of the proposed converter. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
The frequency‐domain‐based realization condition related to a novel non‐invasive chaos control is presented in this paper. According to the common piecewise‐linear characteristics of PWM‐controlled DC–DC converter system, a general expression for its Jacobian matrix is derived for optimizing the control parameters of the proposed non‐invasive chaos control. The relevant simulation and experiment results about the application of the chaos control to a voltage‐mode Buck converter are given, which confirm the feasibility of the parameter‐optimization method and the validity of the proposed non‐invasive chaos control. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
This paper presents a DC/DC converter topology for renewable energy systems. The proposed DC/DC converter can be used to obtain a well‐regulated output voltage from low‐voltage power source, such as wind turbine, photovoltaic array, fuel cell, etc. It has the merits of high efficiency, low device stresses, and low current ripple. The operating principle, theoretical analysis, and design criteria are provided in this paper. A laboratory prototype was successfully implemented. The simulation and experimental results are given to verify the feasibility of the proposed scheme. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
为了满足越来越大的储能系统规模对大功率储能变流器的需求,将多重化DC/DC变换器引入储能变流器的拓扑结构。对多重化DC/DC变换器的电流纹波及谐波特性的分析表明其具有显著优势。储能变流器的控制策略加入基于直流母线电压的下垂控制。对所研究的储能变流器拓扑结构及控制策略进行仿真并搭建样机。仿真和实验结果表明,所设计的基于多重化DC/DC变换器储能变流器性能具备大功率充放电的功能并且性能优良。  相似文献   

14.
This paper describes the electrical characteristics of a multilayered transformer composed of a Mn‐Zn ferrite core, and primary and secondary conductors positioned alternately not only in the vertical direction but also in the horizontal direction. In order to elucidate the operating characteristics of the two types of transformers, one was given the conventional planar winding structure and the other the new winding structure described above, and a two‐dimensional finite element method that took account of the two conditions and a constant input voltage and load current was introduced. The coupling coefficient of the conventional multilayered transformer deteriorated with increasing load current. But the coupling coefficient of the proposed multilayered transformer was independent of the load current. A forward‐type DC–DC converter using the new multilayered transformer had higher efficiency than a converter using the conventional multilayered transformer. © 2001 Scripta Technica, Electr Eng Jpn, 135(4): 1–8, 2001  相似文献   

15.
A novel high‐efficiency transformerless buck–boost DC–DC converter is proposed in this paper. The presented converter voltage gain is higher than that of the conventional boost, buck–boost, CUK, SEPIC and ZETA converters, and high voltage gain can be obtained with a suitable duty cycle. The voltage stress across the power switch is low. Hence, the low on‐state resistance of the power switch can be selected to decrease conduction loss of the switch and improve efficiency. The input current ripple in the presented converter is low. The principle of operation and the mathematical analyses of the proposed converter are explained. The validity of the presented converter is verified by the simulation results in PSCAD/EMTDC software and experimental results based on the prototype circuit with 250 W and 40 kHz. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
The output power requirement of battery charging circuits can vary in a wide range, hence making the use of conventional phase shift full bridge DC‐DC converters infeasible because of poor light load efficiency. In this paper, a new ZVS‐ZCS phase shift full bridge topology with secondary‐side active control has been presented for battery charging applications. The proposed circuit uses 2 extra switches in series with the secondary‐side rectifier diodes, operating with phase shift PWM. With the assistance of transformer's magnetizing inductance, the proposed converter maintains zero voltage switching (ZVS) of the primary‐side switches over the entire load range. The secondary‐side switches regulate the output voltage/current and perform zero current switching (ZCS) independent of the amount of load current. The proposed converter exhibits a significantly better light load efficiency as compared with the conventional phase shift full bridge DC‐DC converter. The performance of the proposed converter has been analyzed on a 1‐kW hardware prototype, and experimental results have been included.  相似文献   

17.
This paper presents a specific analysis of an individual basic magnetically coupled direct current‐to‐direct current (DC–DC) converter specially designed for integration in a distributed architecture of renewable energy generators for smart grid applications. In such distributed architecture dedicated for renewable energy, parallel high‐voltage DC presents many advantages over the classical centralized one. We show that in such setup, high voltage can be advantageously produced using a specific magnetically coupled boost converter, and we point out the influence of the coupling factor, generally considered equal to one, on the overall performance of the converter and on the global energy efficiency of the installation. In this study, the generalized concepts of system energy parameters of DC–DC converters are introduced and applied to the transient analysis. Consequently, the operation of a magnetic coupled DC–DC converter with a recovery stage is modeled. The simulation results are compared with those of the behavioral study, deduced from the model pointing out the large influence of the coupling factor value on the global behavior and mainly on the value of the recovery voltage, in all the various parts of the switching cycle. The renewable energy generator operating parameters, such as current and voltage values, can then be predicted in a more useful way to compute new similar DC–DC converter systems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, a new soft switching direct current (DC)–DC converter with low circulating current, wide zero voltage switching range, and reduced output inductor is presented for electric vehicle or plug‐in hybrid electric vehicle battery charger application. The proposed high‐frequency link DC–DC converter includes two resonant circuits and one full‐bridge phase‐shift pulse‐width modulation circuit with shared power switches in leading and lagging legs. Series resonant converters are operated at fixed switching frequency to extend the zero voltage switching range of power switches. Passive snubber circuit using one clamp capacitor and two rectifier diodes at the secondary side is adopted to reduce the primary current of full‐bridge converter to zero during the freewheeling interval. Hence, the circulating current on the primary side is eliminated in the proposed converter. In the same time, the voltage across the output inductor is also decreased so that the output inductance can be reduced compared with the output inductance in conventional full‐bridge converter. Finally, experiments are presented for a 1.33‐kW prototype circuit converting 380 V input to an output voltage of 300–420 V/3.5 A for battery charger applications. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
There are many applications in power electronics that demand high step‐up conversion ratio between the source and the load. A simple way of achieving such a high voltage ratio is by cascading DC–DC boost converters in a few stages. The individual converters in such a cascaded system are usually designed separately applying classical design criteria. This paper investigates the stability of the overall system of a cascade connection of two boost converters under current mode control. We first demonstrate the bifurcation behavior of the system, and it is shown that the desired periodic orbit can undergo fast‐scale period doubling bifurcation leading to subharmonic oscillations and chaotic regimes under parameter variation. The value of the intermediate capacitor is taken as a design parameter, and we determine the minimum ramp slope in the first stage required to maintain stability. It is shown that smaller capacitance values give rise to wider stability range. We explain the bifurcation phenomena using a full‐order model. Then, in order to simplify the analysis and to obtain a closed‐form expression to explain the previous observation, we develop a reduced‐order model by treating the second stage as a current sink. This allows us to obtain design‐oriented stability boundaries in the parameter space by taking into account slope interactions between the state variables in the two stages. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, a pulse width modulation DC‐DC converter with high step‐up voltage gain is proposed. The proposed converter achieves high step‐up voltage gain with appropriate duty ratio, coupled inductor, and voltage multiplier technique. The energy stored in the leakage inductor of the coupled inductor can be recycled in the proposed converter. Moreover, because both main and auxiliary switches can be turned on with zero‐voltage switching, switching loss can be reduced by soft‐switching technique. So the overall conversion efficiency is improved significantly. The theoretical steady‐state analyses and the operating principles of the proposed converter are discussed in detail for both continuous conduction mode and discontinuous conduction mode. Finally, a laboratory prototype circuit of the proposed converter is implemented to verify the performance of the proposed converter. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号