首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three new grounded capacitor current mode low‐pass filters using two inverting second‐generation current conveyor (ICCII) or one double output ICCII are given. The circuits employ the minimum number of passive circuit components, namely two resistors and two capacitors. The circuits are generated from three new voltage mode low‐pass filters realized with the ICCII. A new grounded capacitor CCII+ current mode low‐pass filter is generated from one of the new voltage mode low‐pass filters employing two ICCII?. A new grounded passive component low‐pass filter with independent control on Q and using three ICCII+ is also introduced. Spice simulation results based on using the 0.5 µm CMOS model are included to support the theoretical analysis. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
This paper proposes six new first‐order voltage‐mode all‐pass sections (VM‐APSs) based on three general topologies. Each circuit uses two differential voltage current conveyors and three grounded passive components. All the circuits possess high input impedance and easy control of pole frequency either by a simple matching of resistors (two equal‐valued resistors) for the three canonical circuits or by a single resistor for three non‐canonical circuits. PSPICE simulation results using real device 0.5µ CMOS parameters are given to validate the proposed circuits. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
A voltage mode Tow Thomas bi‐quadratic filter using the inverting second‐generation current conveyor (ICCII) is given. The filter has high input impedance, employs two grounded capacitors, and has independent control on Q, independent control on the band‐pass and low‐pass response gain. Three alternative current mode filters are generated from the voltage mode circuit. The three circuits have zero input impedance, employ grounded capacitors and have independent control on Q. Two of the circuits have also all resistors grounded and the other uses only ICCII?and has only one floating resistor. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents a novel second‐generation current conveyor (CCII)‐based non‐inverting Schmitt trigger topology. By means of the use of only three resistances, it is possible to set easily the threshold values or, in addition, the trigger can be set also to work as a zero‐voltage comparator. The theoretical working principle has been confirmed through PSpice simulations implementing an integrated CCII, designed in a low‐cost standard complementary metal–oxide–semiconductor technology (Austria Micro Systems (AMS) 0.35 µm) with low‐voltage low‐power characteristics, and then by experimental tests on the fabricated printed circuit board prototype through the use of the commercial component AD844 (Analog Devices) as CCII. As its main application example, the presented trigger has been employed to implement an astable multivibrator proposed here as a capacitive sensor interface capable to accurately detect about five decades of capacitive variations in the range of [100 pF–5.5 μF] with a maximum relative error lower than ±10%. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
A low‐voltage, low‐power, low‐area, wide‐temperature‐range CMOS voltage reference is presented. The proposed reference circuit achieves a measured temperature drift of 15 ppm/°C for an extremely wide temperature range of 190 °C (?60 to 130 °C) while consuming only 4 μW at 0.75 V. It performs a high‐order curvature correction of the reference voltage while consisting of only CMOS transistors operating in subthreshold and polysilicon resistors, without utilizing any diodes or external components such as compensating capacitors. A trade‐off of this circuit topology, in its current form, is the high line sensitivity. The design was fabricated using TowerJazz semiconductor's 0.18‐µm standard CMOS technology and occupies an area of 0.039 mm2. The proposed reference circuit is suitable for high‐precision, low‐energy‐budget applications, such as mobile systems, wearable electronics, and energy harvesting systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
A continuous‐time (CT) ΣΔ modulator for sensing and direct analog‐to‐digital conversion of nA‐range (subthreshold) currents is presented in this work. The presented modulator uses a subthreshold technique based on subthreshold source‐coupled logic cells to efficiently convert subthreshold current to digital code without performing current‐to‐voltage conversion. As a benefit of this technique, the current‐sensing CT ΣΔ modulator operates at low voltage and consumes very low power, which makes it convenient for low‐power and low‐voltage current‐mode sensor interfaces. The prototype design is implemented in a 0.18 µm standard complementary metal‐oxide semiconductor technology. The modulator operates with a supply voltage of 0.8 V and consumes 5.43 μW of power at the maximum bandwidth of 20 kHz. The obtainable current‐sensing resolution ranges from effective number of bits (ENOB) = 7.1 bits at a 5 kHz bandwidth to ENOB = 6.5 bits at a 20 kHz bandwidth (ENOB). The obtained power efficiency (peak FoM = 1.5 pJ/conv) outperforms existing current‐mode analog‐to‐digital converter designs and is comparable with the voltage‐mode CT ΣΔ modulators. The modulator generates very low levels of switching noise thanks to CT operation and subthreshold current‐mode circuits that draw a constant subthreshold current from the voltage supply. The presented modulator is used as a readout interface for sensors with current‐mode output in ultra low‐power conditions and is also suitable to perform on‐chip current measurements in power management circuits. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents a new current‐mode CMOS loser‐take‐all circuit. The proposed circuit consists of a basic cell that allows implementation of a multi‐input configuration by repeating the cell for each additional input. A high‐speed feedback structure is employed to determine the minimum current among the applied inputs. The significant feature of the circuit is its high accuracy and high‐speed operation. Additionally, the input dynamic range of the circuit can be efficiently controlled via the biasing current. HSPICE simulation results are presented to verify the performance of the circuit, where under a supply voltage of 2.5 V, bias current of 100 µA, and frequency of 10 MHz, the input dynamic range increases within 0–100 µA and the corresponding error remains as low as 0.4%. © 2014 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

8.
A simple realization of a 0.5 V bulk‐driven voltage follower/direct current (DC) level shifter designed in a 0.18 µm CMOS technology is presented in the paper. The circuit is characterized by large input and output voltage swings and a DC voltage gain close to unity. The DC voltage shift between input and output terminals can be regulated in a certain interval around zero, by means of biasing current sinks. An application of the proposed voltage follower circuit for realization of a low‐voltage class AB output stage has also been described in the paper. Finally, the operational amplifier exploiting the proposed output stage has been presented and evaluated in detail. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
A new 0.5‐V fully differential amplifier is proposed in this article. The structure incorporates a differential bulk‐driven voltage follower with conventional gate‐driven amplification stages. The bulk‐driven voltage follower presents differential gain equal to unity while suppressing the input common‐mode voltage. The amplifier operates at a supply voltage of less than 0.5 V, performing input transconductance almost equal to a gate transconductance and relatively high voltage gain without the need for gain boosting. The circuit was designed and simulated using a standard 0.18‐µm CMOS n‐well process. The low‐frequency gain of the amplifier was 56 dB, the unity gain bandwidth was approximately 3.2 MHz, the spot noise was 100 nV/√Hz at 100 kHz and the current consumption was 90 μΑ. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
A low‐voltage input stage constructed from bulk‐driven PMOS transistors is proposed in this paper. It is based on a partial positive feedback and offers significant improvement of both input transconductance and noise performance compared with those achieved by the corresponding already published bulk‐driven structures. The proposed input stage offers also extended input common‐mode range under low supply voltage in relevant to a gate‐driven differential pair. A differential amplifier based on the proposed input stage is also designed, which includes an auxiliary amplifier for the output common‐mode voltage stabilization and a latch‐up protection circuitry. Both input stage and amplifier circuits were implemented with 1 V supply voltage using standard 0.35µm CMOS process, and their performance evaluation gave very promising results. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
A new tunable current‐mode (CM) biquadratic filter with three inputs and three outputs using three dual‐output inverting second‐generation current conveyors, three grounded resistors and two grounded capacitors is proposed. The proposed circuit exhibits low‐input impedance and high‐output impedance which is important for easy cascading in the CM operations. It can realize lowpass, bandpass, highpass, bandreject and allpass biquadratic filtering responses from the same topology. The circuit permits orthogonal controllability of the quality factor Q and resonance angular frequency ωo, and no component matching conditions or inverting‐type input current signals are imposed. All the passive and active sensitivities are low. Hspice simulation results are based on using TSMC 0.18 µm 1P6M process complementary metal oxide semiconductor technology and supply voltages ±0.9 V to verify the theoretical analysis. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper a mixed‐mode (input and output signals can be current or voltage) Kerwin–Huelsman–Newcomb (KHN) biquad with low/high input impedance and high/low output impedance depending on the type of the corresponding signal (current/voltage) is presented. The circuit is constructed using three differential voltage current conveyors (DVCCs), two grounded capacitors and three grounded resistors. The circuit simultaneously provides bandpass (BP), highpass (HP) and lowpass (LP) responses when the output is current and notch, BP and LP responses when the output is voltage. The notch and allpass responses can be obtained by connecting appropriate output currents directly without using additional active elements. Because of the low input and high output impedance of the circuit for current signals and the high input and low output impedance for voltage signals, it can be used in cascade for realizing higher‐order filters. SPICE simulation results are given to verify the theoretical analysis. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
A new band‐gap reference (BGR) circuit employing sub‐threshold current is proposed for low‐voltage operations. By employing the fraction of VBE and the sub‐threshold current source, the proposed BGR circuit with chip area of 0.029mm2 was fabricated in the standard 0.18µm CMOS triple‐well technology. It generates reference voltage of 170 mV with power consumption of 2.4µW at supply voltage of 1 V. The agreement between simulation and measurement shows that the variations of reference voltage are 1.3 mV for temperatures from ?20 to 100°C, and 1.1 mV per volt for supply voltage from 0.95 to 2.5 V, respectively. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
A new solution for an ultra low voltage bulk‐driven programmable gain amplifier (PGA) is described in the paper. While implemented in a standard n‐well 0.18‐µm complementary metal–oxide–semiconductor (CMOS) process, the circuit operates from 0.3 V supply, and its voltage gain can be regulated from 0 to 18 dB with 6‐dB steps. At minimum gain, the PGA offers nearly rail‐to‐rail input/output swing and the input referred thermal noise of 2.37 μV/Hz1/2, which results in a 63‐dB dynamic range (DR). Besides, the total power consumption is 96 nW, the signal bandwidth is 2.95 kHz at 5‐pF load capacitance and the third‐order input intercept point (IIP3) is 1.62 V. The circuit performance was simulated with LTspice. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Two new CMOS analog continuous‐time equalizers for high‐speed short‐haul optical fiber communications are presented in this paper. The proposed structures compensate the limited bandwidth‐length product of 1‐mm step‐index polymer optical fiber channels (45 MHz, 100 m) and have been designed in a standard 0.18‐µm CMOS process. The equalizers are aimed for multi‐gigabit short‐range applications, targeting up to 2 Gb/s through a 50‐m step‐index polymer optical fiber. The prototypes operate with a single supply voltage of only 1 V and overcome the severe limitations suffered by the widely used degenerated differential pair caused by the low supply voltage. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Current mode Tow Thomas filter using two‐output inverting second‐generation current conveyor is given, the circuit has low input impedance, employs two grounded capacitors and three grounded resistors and has independent control on Q. A universal current mode filter capable of realizing the five filter functions is also given. Both circuits have low sensitivities to all circuit components. Spice simulation results are included. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, two new circuit configurations for realizing voltage‐mode (VM) all‐pass sections (APSs) are presented. The proposed circuits employ only two differential voltage current conveyors (DVCCs) and are cascadable with other VM circuits due to their high‐input and low‐output impedances. The first configuration uses a grounded resistor and a grounded capacitor without requiring matching constraints, whereas the second employs two grounded resistors and a grounded capacitor with a single matching condition. While the first configuration can realize only one all‐pass response, the second can provide inverting and non‐inverting all‐pass responses with selection of appropriate input port. Adding two grounded resistors to the proposed filters, variable gain APSs can also be obtained. As applications, two quadrature oscillators, each of which using one of the proposed all‐pass circuits, one grounded resistor and one grounded capacitor are presented. SPICE simulation results are included to verify the theory. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
A continuous‐time complementary metal–oxide–semiconductor differential pair that does not require the traditional tail current source as a way to control the direct current and common‐mode current is presented. Compared with a p‐channel long‐tailed pair, the proposed non‐tailed solution operates under a higher maximum input common‐mode voltage that includes (VDD + VSS)/2 even under low supply voltages. Experimental measurements on a prototype fabricated in a 0.35‐µm technology (with metal – oxide – semiconductor thresholds greater than 0.6 V) confirm this behavior for supply voltages as low as 1.2 V, whereas the long‐tailed pair with the same technology offers the same capability only for supplies higher than 1.6 V. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
This letter presents a novel LC voltage controlled oscillator (VCO) supporting the high‐speed serial transmission standard of RapidIO in 0.13‐µm complementary metal‐oxide semiconductor technology. The low phase noise is achieved through several techniques including current source switching, parallel coupled negative transconductance cell, and varactor bias combination scheme. Measured results of proposed circuit show a low phase noise of ?120 dBc/Hz at 1 MHz offset from 6.25 GHz carrier and tuning range of 4.8 ~ 6.8 GHz (34.48%) while consuming 7.4 mW under the supply voltage of 1.2 V. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
The current paper presents a novel Schmitt trigger using two second‐generation current conveyors and four resistors and its application as a relaxation oscillator. The performance of the proposed circuit is examined using Cadence and the model parameters of a 0.6µm CMOS process. The obtained results demonstrate excellent agreement with the theoretical values. The measured results based on commercially available current feedback operational amplifiers (AD 844 AN) are included and the non‐idealities are also examined. The topology reports low sensitivities and has features suitable for VLSI implementation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号