首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sharp loss‐in‐capacity in CO2 capture as a result of sintering is a major drawback for CaO‐based sorbents used in the calcium looping process. The decoration of inert supports effectively stabilizes the cyclic CO2 capture performance of CaO‐based sorbents via sintering mitigation. A range of Al‐decorated and Al/Mg co‐decorated CaO‐based sorbents were synthesized via an easily scaled‐up spray‐drying route. The decoration of Al‐based and Al/Mg‐based supports efficiently enhanced the cyclic CO2 capture capability of CaO‐based sorbents under severe testing conditions. The CO2 capture capacity losses of Al‐decorated and Al/Mg co‐decorated CaO‐based sorbents were alleviated, representing more stable CO2 capture performance. The stabilized CO2 capture performance is mainly attributed to the formation of Ca12Al14O33, MgAl2O4, and MgO that act as the skeleton structures to mitigate the sintering of CaCO3 during carbonation/calcination cycles.  相似文献   

2.
Steel slag was used as a low‐cost feedstock to prepare CaO‐based sorbents for CO2 capture by acidification treatment, and the acidification process was optimized. Four main acidification parameters (i.e., extraction time, extraction temperature, acetic acid concentration, and solid/liquid ratio) were investigated. The solid/liquid ratio and extraction time are the most important factors that affect the CO2 capture capacity and stability of the sorbents. The CO2 sorption performance of optimal steel‐slag‐derived sorbent is more stable than that of naturally occurring limestone, due to the low Si/Ca ratio and the presence of MgO with high anti‐sintering ability. CaO‐based pellets with high resistance to attrition and compression were produced by extrusion of the steel‐slag‐derived sorbent powders.  相似文献   

3.
With the aim to enhance the CO2 capture capacity and anti‐attrition property of CaO‐based sorbents simultaneously, a novel CaO‐based sphere was prepared by extrusion‐spheronization using Ca(OH)2 powder with glucose templating. The CO2 capture characteristics and attrition resistance property of the sorbent were examined and the microstructure of the sorbents was analyzed. The results demonstrate that the obtained spherical sorbents exhibit an outstanding anti‐attrition performance compared to limestone sorbent. After 100 cycles, all of the templated sorbents hold a CO2 capture capacity of more than one time higher than that of limestone. The optimum templating rate of glucose in the sorbent was 1–5 wt %.  相似文献   

4.
Calcium looping process is a promising approach for CO2 capture from the flue gas of fossil fuel power plants and the cement industry. Even though the advantages of calcium-based sorbents are low cost and high uptake capacity, they suffer from low durability during cycles. Modified sorbents were fabricated by adding alumina and zirconia and the mixture of alumina and zirconia to calcium oxide via the co-precipitation method. The performance of synthesized sorbents in terms of stability and CO2 capture capacity were evaluated using a fixed bed reactor in various CO2 sorption/desorption cycles. The sorbents were fabricated by a co-precipitation methodology using 10% binders (alumina and/or silica). X-ray diffraction (XRD), BET/BJH, and scanning electron microscopy (SEM) were conducted for characterization of synthesized sorbents. CaO-10% ZrO2 showed the best performance among the fabricated sorbents in terms of stability during 5 cycles and CO2 capacity (14 mmol CO2/g sorbent). The formation of CaZrO3 with a perovskite structure and high-temperature resistance could be attributed to well performance of zirconia-supported sorbent. On the other hand, no sign of aluminum zirconate formation was approved in XRD analysis for the fabricated sorbent using mixed binders of zirconia and alumina to enhance its stability during cycles.  相似文献   

5.
The water gas shift reaction was evaluated in the presence of novel carbon dioxide (CO2) capture sorbents, both alone and with catalyst, at moderate reaction conditions (i.e., 300-600 °C and 1-11.2 atm). Experimental results showed significant improvements to carbon monoxide (CO) conversions and production of hydrogen (H2) when CO2 sorbents are incorporated into the water gas shift reaction. Results suggested that the performance of the sorbent is linked to the presence of a Ca(OH)2 phase within the sorbent. Promoting calcium oxide (CaO) sorbents with sodium hydroxide (NaOH) as well as pre-treating the CaO sorbent with steam appeared to lead to formation of Ca(OH)2, which improved CO2 sorption capacity and WGS performance. Results suggest that an optimum amount of NaOH exists as too much leads to a lower capture capacity of the resultant sorbent. During capture, the NaOH-promoted sorbents displayed a high capture efficiency (nearly 100%) at temperatures of 300-600 °C. Results also suggest that the CaO sorbents possess catalytic properties which may augment the WGS reactivity even post-breakthrough. Furthermore, promotion of CaO by NaOH significantly reduces the regeneration temperature of the former.  相似文献   

6.
The calcium‐looping process for post‐combustion carbon dioxide capture, an economically and technically feasible method suitable for large‐scale use, has recently gained much attention. However, the capture capacity of calcium‐based sorbents rapidly decreases after only a few cycles. Herein, calcium‐based sorbents with enhanced cyclic CO2‐capture capacity have been derived from cheap, natural raw materials by using a simple impregnation method. Limestone and shells were used as the calcium‐based raw materials, with sea salt as dopant. Modified limestone had the highest CO2‐capture capacity after multiple carbonation‐calcination cycles. Sea‐salt‐doped sorbent showed a relatively stable porous surface during cycles, which resulted in a higher CO2‐capture capacity.  相似文献   

7.
The effects of alkali-metal carbonates and nitrates on the CO2 sorption and regeneration of MgO-based sorbents were investigated in the presence of 10 vol% CO2 and 10 vol% H2O in an intermediate temperature range, 300 to 450 °C. The CO2 capture capacities of the MgO-based sorbents promoted with Na2CO3 and K2CO3 were 9.7 and 45.0 mg CO2/g sorbent, respectively. On the other hand, a MgO-based sorbent promoted with both Na2CO3 and NaNO3 exhibited the highest CO2 capture capacity of 97.4mg CO2/g sorbent at 200 °C in 10 vol% CO2, which was almost ten-times greater than that of the MgO-based sorbent promoted with Na2CO3. The CO2 sorption rate of these sorbents was higher than that of the MgO-based sorbents promoted with alkali-metal nitrates due to the formation of Na2Mg(CO3)2 or K2Mg(CO3)2 by the alkali-metal carbonate and the eutectic reaction of the alkali-metal nitrates. In addition, the reproducibility problem of double-salt sorbents obtained by the precipitation method was completely resolved by impregnating MgO with alkali-metal carbonates and nitrates. Furthermore, we found that their desorption temperatures are lower than those of the MgO-based sorbents promoted with alkali-metal carbonates due to the eutectic reaction during the regeneration process.  相似文献   

8.
Class F coal fly ash was slurried with hydrated lime at 90°C in 1/3, 5/3, 9/3, and 15/3 weight ratios and for 3, 5, 7, and 9 hours of hydration, in a process to prepare sorbents for SO2 removal. The amounts of aluminum, silicon, and calcium in the product of the pozzolanic reaction were determined in order to study the evolution of product composition with the initial raw materials ratio and hydration time and to relate this composition to the desulfurization capability of the material. Al, Si, and Ca were present in the solid product for any raw materials ratio and hydration time, showing that calcium silicates, calcium aluminates, and/or calcium aluminum silicates were obtained simultaneously. The products formed show a nearly constant molar ratio of Al2O3/SiO2 independent of the experimental conditions tested and similar to the Al2O3/SiO2 ratio in the fly ash. The SiO2/CaO molar ratio in the products decreased as the initial fly ash/Ca(OH)2 ratio decreased, being approximately constant for each ratio with respect to hydration time after 5 hours of hydration. The maximum moles of CaO, SiO2, and Al2O3 per gram of sorbent in the reaction product were found for any hydration time for the 5/3 sorbents, meaning that at this initial ratio the pozzolanic reaction takes place at the highest rate. The capacity of the sorbent for SO2 removal depends not only on the amount of products produced by the pozzolanic reaction but also on the specific surface area of the sorbent.  相似文献   

9.
The synthesis of highly efficient CaO‐based sorbents using Ca(Ac)2 as a precursor and ethanol as a modification agent for CO2 capture is described. This adsorbent has several characteristics such as large surface area and pore volume and small particle size. The influence of ratio of ethanol and water on CO2 adsorption capacity was evaluated considering that the ethanol concentration could affect the pore structure of sorbents. The results showed that CaO modified by ethanol solution had a higher carbonization and better stability. Particularly, when the volume ratio of ethanol and water was 3, a performance of adsorption capacity of 74% and conversion of 94% was observed. CaO modified by ethanol solution had a superior performance due to the decrease of grain size and the formation of loose porous structure. The influence of steam on stability of adsorbents at high temperatures was examined, and it was found that with the existence of steam diffusion, the capacity of the sorbent could remain at a higher level and the stability was evidently improved. After 18 cycles of adsorption/desorption process, the capacity remained as high as 65%. It was proposed that dynamic and cyclic steam injection was favorable for preventing the sintering of sorbents and facilitating the diffusion of CO2. © 2013 American Institute of Chemical Engineers AIChE J, 59: 3586–3593, 2013  相似文献   

10.
Fluidized bed combustion (FBC) enables the in situ capture of SO2, but generates large amounts of wastes whose composition and physico-chemical properties make both landfilling and reuse in traditional fields of application (e.g., cement and concrete industries) problematic. Reactivation by water hydration of the desulphurizing ability of these residues is considered a viable mean for their recycling: besides Ca(OH)2, this process can generate other hydration products, such as ettringite. This paper is devoted to a comparison between the behaviour of Ca(OH)2 and ettringite as SO2 sorbents. To this end, synthetic preparations (in the particle size range 0.4–0.6 mm) of the two materials were dehydrated and then sulphated in a lab-scale fluidized bed reactor. Sulphation tests were carried out at 850 °C by fluidizing the bed with an SO2–N2–O2 mixture (1800 ppm SO2) at 0.8 m/s. Calcium conversion degree and fines elutriation rate were evaluated as a function of sulphation time. The propensity of the sorbents to undergo fragmentation was also estimated by particle sizing of in-bed exhausted sorbent particles, with the aid of laser granulometry. Mercury intrusion porosimetry of samples was directed to the assessment of the influence of sorbent dehydration and subsequent sulphation on pore size distribution and porosimetric texture. X-ray diffraction and differential thermal analysis on the synthetic sorbents complemented the characterization. Results showed that dehydration/thermal decomposition brought about a significant increase of the overall porosity for both sorbents, more extensive than it is commonly observed with calcined commercial limestones. Upon sulphation, the two sorbents showed satisfactory degrees of calcium conversion, larger than those usually observed with limestones. Sulphation resulted into a decrease of particle voidage (that of the Ca(OH)2-based sorbent was negligible after the process). Ettringite was more prone to attrition/fragmentation than calcium hydroxide. Results are discussed with a focus on differences between calcium hydroxide and ettringite and on key-parameters affecting the performance of the two materials as sorbents.  相似文献   

11.
Used clamshells (Paphia undulata), as a precursor of calcium oxide (CaO) sorbents, were employed for carbon dioxide (CO2) adsorption in a bubbling fluidized‐bed reactor. To find the optimal calcination conditions, a 2k experimental design was used to vary the ground clamshell particle size, heating rate, and calcination time at 950 °C under a nitrogen atmosphere. The heating rate was the most significant factor affecting the CO2 adsorption capacity of the obtained CaO sorbent. The maximum CO2 adsorption capacity of the CaO obtained under these study conditions was higher than that of commercial CaO.  相似文献   

12.
A thermodynamic analysis is performed with a Gibbs free energy minimization method to compare the conventional steam reforming of ethanol (SRE) process and sorption‐enhanced SRE (SE‐SRE) with three different sorbents, namely, CaO, Li2ZrO3, and hydrotalcite‐like compounds (HTlc). As a result, the use of a CO2 adsorbent can enhance the hydrogen yield and provide a lower CO content in the product gas at the same time. The best performance of SE‐SRE is found to be at 500 °C with an HTlc sorbent. Nearly 6 moles hydrogen per mole ethanol can be produced, when the CO content in the vent stream is less than 10 ppm, so that the hydrogen produced via SE‐SRE with HTlc sorbents can be directly used for fuel cells. Higher pressures do not favor the overall SE‐SRE process due to lower yielding of hydrogen, although CO2 adsorption is enhanced.  相似文献   

13.
The preparation of hydrotalcites with traditional materials is often based on the corresponding salts and alkali solutions. In this study, to facilitate industrial synthesis and take advantage of the lower cost during the process, a Ca–Al–HPO3–layered double hydroxide (LDH) was directly synthesized with calcium hydroxide, aluminum hydroxide, and sodium phosphite powders. X‐ray diffraction, Fourier transform infrared, and scanning electron microscopy analyses confirmed the successful synthesis of the phosphite‐intercalated hydrotalcite. Compared with Ca–Al–CO3–LDH, Ca–Al–HPO3–LDH enhanced the heat stability of poly(vinyl chloride) (PVC) in terms of both short‐term and long‐term stability because phosphite replaced the allyl chloride and reacted with the conjugated double bonds in PVC; this was deduced through a thermal aging test. The composites of Ca–Al–HPO3–LDH, zinc stearate, and calcium stearate had a synergetic effect when added to PVC and exhibited excellent thermal stability. In addition, the phosphite reacted with ZnCl2 in case of the phenomenon of zinc burning. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44896.  相似文献   

14.
使用添加剂调质钙基脱硫剂   总被引:5,自引:1,他引:4  
以NaOH、Na2CO3、MgO等调质钙基脱硫剂,在固定床内进行脱硫实验.实验结果表明,不同添加剂调质后的脱硫剂固硫能力均有提高.通过多种实验手段分析发现,调质一方面改善了脱硫剂颗粒的孔隙分布,另一方面,使得脱硫剂颗粒的表面微观形貌和物质组成发生了变化,从而提高了脱硫剂的固硫性能.研究发现,NaOH和Na2CO3的复合调质能够显著提高脱硫剂的固硫效果.  相似文献   

15.
Iodine bearing reactive materials and fuel additives are being developed to inactivate harmful aerosolized spores and bacteria by combined thermal and chemical effects. Nanocomposite thermites with aluminum and boron serving as fuels and calcium iodate as an oxidizer were prepared by arrested reactive milling. Both materials contained 80 wt % of calcium iodate. Morphology and particle sizes of the prepared materials were characterized using scanning electron microscopy (SEM). Both powders comprised particles finer than ca. 10 μm with fuel and oxidizer mixed on the submicrometer scale. Powders were exposed to room air to assess their stability. They were ignited as a thin coating on an electrically heated filament. Powders were injected in an air‐acetylene flame to observe combustion of individual particles. Pressed pellets for both prepared materials were prepared and ignited using a CO2 beam. Al ⋅ Ca(IO3)2 oxidizes rapidly in room air, whereas no aging was detected for B ⋅ Ca(IO3)2. Ignition of Al ⋅ Ca(IO3)2 occurs around 1150 K, after both aluminum and calcium iodate melt. Ignition is accompanied by ejection of sintered particles undergoing microexplosions while they are combusting. Ignition of B ⋅ Ca(IO3)2 occurs between 600 and 700 K, before either of the components melt. Combustion is accompanied by the formation of a luminous halo above the material, suggesting a vapor‐phase reaction involving boron suboxides. Longer ignition delays are observed for the pellets of Al ⋅ Ca(IO3)2 heated by the CO2 laser beam compared to similar pellets of B ⋅ Ca(IO3)2. Burn rates of B ⋅ Ca(IO3)2 pellets are nearly twice as fast as those of Al ⋅ Ca(IO3)2, primarily due to the lower ignition temperature for the boron‐based thermite. The flame temperatures obtained from the time‐integrated optical spectra are close to 2140 and 2060 K for Al ⋅ Ca(IO3)2 and B ⋅ Ca(IO3)2, respectively. Individual particles of B ⋅ Ca(IO3)2 injected into an air‐acetylene flame burn slower than similar Al ⋅ Ca(IO3)2 particles. Based on their better stability, lower ignition temperatures, shorter ignition delays, and longer burn times leading to a more gradual release of iodine, B ⋅ Ca(IO3)2 composites are suggested to be better suited as components of energetic formulations aimed to defeat stockpiles of biological weapons.  相似文献   

16.
The direct dual layer spinning of Torlon®/silica hollow fibers with a neat Torlon® lumen layer is reported here for the first time. The dual layer fibers containing a porous Torlon®/silica main structure and a dense, pure Torlon® polymer bore‐side coating provide a simplified, scalable platform from which to construct hollow fiber amine sorbents for postcombustion CO2 capture. After fiber spinning, an amine infusion process is applied to incorporate PEI into the silica pores. After combining dilute Neoprene treatment followed by poly(aramid)/PDMS treatment, a helium permeance of the fiber sorbents of 2 GPU with a He/N2 selectivity of 7.4 is achieved. Ten of the optimized amine‐containing hollow fibers are incorporated into a 22‐inch long, 1/2 inch OD shell‐and‐tube module and the module is then exposed on the shell side to simulated flue gas with an inert tracer (14 mol % CO2, 72 mol % N2, 14 mol % He [at 100% R.H.]) at 1 atm and 35°C in a RTSA system for preliminary CO2 sorption experiments. The fibers are found to have a breakthrough and equilibrium CO2 capacity of 0.8 and 1.2 mmol/g‐ dry fiber sorbent, respectively. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41845.  相似文献   

17.
Based on experiments on desulfurization, CaSO4 decomposition, and a system approach using theoretical analysis, efficient in-furnace desulfurization in O2/CO2 combustion was investigated. The influence of combustion conditions and sorbent properties on system desulfurization efficiency was clarified. The global desulfurization efficiency was found to increase with O2 purity. The global desulfurization efficiency in a dry recycle was higher than that in a wet recycle. The global efficiency of in-furnace desulfurization decreased with initial O2 concentration. As the temperature increased, the global desulfurization efficiency increased first and then decreased due to the decomposition of CaSO4. In the temperature range investigated, the global desulfurization efficiency in O2/CO2 coal combustion was much higher than that of conventional coal combustion in air. The global desulfurization efficiency decreased with sorbent size. When the particle radius decreased to one quarter, the global desulfurization efficiency doubled, becoming as high as 80%. The global desulfurization efficiency was very different among the three sorbents investigated, whether in O2/CO2 combustion or in conventional air combustion. The global desulfurization efficiency increased in the order of Ca(OH)2, scallop, and limestone in O2/CO2 combustion, but in the order of scallop, Ca(OH)2, and limestone in conventional air combustion. Nevertheless, all three sorbents demonstrated much higher desulfurization efficiency in O2/CO2 combustion than in conventional air combustion.  相似文献   

18.
《分离科学与技术》2012,47(2):283-296
Abstract

In this study, a new preparation method providing greatly improved CO2 sorption is introduced. Li2ZrO3 sorbent was prepared by low temperature co‐precipitation and compared in CO2 sorption performance with a sorbent prepared by the conventional high temperature solid‐state reaction method. The two sorbents were characterized using scanning electron microscopy, X‐ray diffraction and thermo‐gravimetric analysis. The Li2ZrO3 powder prepared by the relatively simple co‐precipitation method showed significantly better performance than the one prepared by solid‐state reaction with respect to both kinetics and CO2 sorption capacity. Extensive study of the powder prepared by co‐precipitation has been performed at various conditions.  相似文献   

19.
MgAlCe‐CO3 layered double hydroxides (LDHs) with different Ce/Al molar ratios were prepared by the constant pH coprecipitation method. The synthesized materials were characterized by XRD and FTIR, and the results showed that the hydrotalcite‐like materials have a layered structure. Different LDHs as stabilizers were mixed with PVC resin. The tests of thermal aging and Congo red for the PVC composites were carried out at 180 ± 1°C, respectively. The results showed when MgAlCe‐CO3‐LDHs were added into PVC as single thermal stabilizers, 3 phr (parts per hundred PVC resin) MgAlCe‐CO3‐LDH with Ce/Al (molar ratio) = 0.075 has a better stabilizing effect on PVC than others. Compared with single thermal stabilizers (LDHs or Ca/Zn systems), the composite thermal stabilizers including 0.3 g calcium stearate (Cast2), 1 g zinc stearate (Znst2), and 3 g MgAlCe‐CO3‐LDH have significantly enhanced the thermal stability of PVC sample, and the thermal stable time was over 190 min. The main reason could be concluded to the special structure of Ce element and the synergistic reaction among MgAlCe‐CO3‐LDHs, Cast2, and Znst2. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
The calcium‐based sorbent cyclic calcination/carbonation reaction is an effective technique for capturing CO2 from combustion processes. The CO2 capture capacity for CaO modified with ethanol/water solution was investigated over long‐term calcination/carbonation cycles. In addition, the SEM micrographs and pore structure for the calcined sorbents were analyzed. The carbonation conversion for CaO modified with ethanol/water solution is greater than that for CaO hydrated with distilled water and is much higher than that for calcined limestone. Modified CaO achieves the highest conversion for carbonation at the range of 650–700 °C. Higher values of ethanol concentration in solution result in higher carbonation conversion for modified CaO, and lead to better anti‐sintering performance. After calcination, the specific surface area and pore volume for modified CaO are higher than those for hydrated CaO, and are much greater than those for calcined limestone. The ethanol molecule enhances H2O molecule affinity and penetrability to CaO in the hydration reaction so that the pores in CaO modified are obviously expanded after calcination. CaO modified with ethanol/water solution can act as a new and promising type of calcium‐based regenerable CO2 sorbent for industrial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号