首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jet spouted beds that consisted of a transparent Plexiglas cylindrical column of 1 m high and a conical base with cone angles of 30°, 36°, and 40° were used in this study. The particles used were spherical glass beads with an average diameter of 1.7, 2.1 and 3 mm, respectively, and particle size of 2.2 – 3.1 mm, non‐spherical rice particles. The effect of size and shape of particles, and static bed height on the minimum jet spouting velocity, and standard deviation of pressure fluctuations, was investigated. The results show that the minimum jet spouting velocity and pressure drop increased as the bed height and particle size increased. The minimum jet spouting velocity could be determined from the plot of standard deviation of pressure fluctuations vs. superficial gas velocity. The results obtained were in close agreement with the results of other methods in the literature.  相似文献   

2.
双喷嘴矩形喷动床流动性能实验研究   总被引:1,自引:0,他引:1  
张少峰  王淑华  赵剑波 《化学工程》2006,34(11):33-35,39
在120 mm×240 mm的双喷嘴矩形不锈钢床内,对新型双喷嘴矩形导流管喷动床的最小喷动速度和喷动高度进行了研究,考察了喷动气速、粒径、静床层高度、导流管直径、导流管安装位置对最小喷动速度和喷动高度的影响。结果表明:最小喷动速度随颗粒直径、导流管直径、导喷距的增大而增大,随静床层高度的增大而减小;喷动高度随喷动气速的增大而增大,随导流管直径的增大而减小,受静床层高度和导喷距的影响不大,并得出了最小喷动速度的关联式。  相似文献   

3.
Spouting of 3.7 mm polyvinyl chloride particles in a cone‐based cylindrical column is subjected to entrainment of FCC powder in the spouting air. It is found that the powder entrainment reduces the minimum spouting velocity, increases the bed pressure drop and reduces the maximum spoutable bed height. At any given bed height and value of U/Ums, there is a critical value of powder loading ratio above which spouting gives way to slugging.  相似文献   

4.
The high velocity spouting regime of a deep bed containing 9.6 mm hollow polyethylene spheres of density 394 kg/m3 was investigated in a 152.4 mm flat bottom cylindrical half column with a 50.8 mm inlet. A bed height vs gas velocity regime diagram is presented showing the conditions under which type II spouting is observed. The transition velocity from bubbling to type II spouting is determined using the autocorrelation of the pressure fluctuations in the bed. The bubbling characteristics of the bed are described. Bed expansion in bubbling and type II spouted beds are reported.  相似文献   

5.
Hydrodynamic measurements for the spouting of fine particles were obtained in a conical‐based cylindrical bed of diameter 0.186 m, inlet orifice diameters of 6 to 14 mm, and included cone angles of 45 to 80 degrees. Four different types of fine particles with diameters ranging from 0.286 to 0.861 mm were investigated. Four different flow regimes—fixed bed, stable spouting, unstable spouting and slugging—were identified and mapped. The termination of the spouting of fine particles was caused by choking rather than by fluidization of particles in the upper bed. Stable spouting could be achieved when the ratio of the orifice diameter to mean particle diameter was less than 20. The measured minimum spouting velocities were within ±15% of those predicted by the Mathur—Gishler equation. Solids density measurements obtained by a gamma ray densitometer showed that the solid density in the spout increases with bed height and in the annulus is 3% to 10% higher than in a loosely packed bed.  相似文献   

6.
Pulp fibers can be spouted in water in a conical vessel. The entities which are spouted are fiber flocs rather than individual fibers. Synthetic fibers, which do not flocculate, cannot be spouted. For comparison, rigid spherical particles were spouted with water in the same conical vessel. Liquid spouting of rigid particles was similar to gaseous spouting. For pulp spouting, the minimum spouting velocity is proportional to the mass of fibers in the bed and inversely proportional to the diameter of the inlet. For rigid particles, the minimum spouting velocity is proportional to the height of the bed and inversely proportional to the square of the diameter of the inlet. A model for the minimum spouting velocity was developed for pulp spouting.  相似文献   

7.
Hydrodynamic studies were conducted in a semi‐cylindrical spouted bed column of diameter 150 mm, height 1000 mm, conical base included angle of 60° and inlet orifice diameter 25 mm. Pressure transducers at several axial positions were used to obtain pressure fluctuation time series with 1.2 and 2.4 mm glass beads at U/Ums from 0.3 to 1.6, and static bed depths from 150 to 600 mm. The conditions covered several flow regimes (fixed bed, incipient spouting, stable spouting, pulsating spouting, slugging, bubble spouting and fluidization). Images of the system dynamics were also acquired through the transparent walls with a digital camera. The data were analyzed via statistical, mutual information theory, spectral and Hurst's Rescaled Range methods to assess the potential of these methods to characterize the spouting quality. The results indicate that these methods have potential for monitoring spouted bed operation.  相似文献   

8.
细颗粒喷动床的流体力学特性   总被引:3,自引:1,他引:2  
在直径186 mm的喷动床中考察了细颗粒(dp=0.241~0.874 mm)体系的流体力学性质及夹带和磨损特性.采用不同的喷嘴直径(Di=6~14 mm)和锥底顶角(θ=45°~80°)对其操作状态进行了研究,发现当Di/dp<19~21时可以形成稳定喷动.随着气体速度的增加,床层依次出现固定床、稳定喷动、不良喷动和腾涌等4个流动区域.实验测量的最小喷动速度与Mathur-Gishler关联式的误差在±15%之内.采用γ射线扫描仪测量了固体密度分布,结果表明喷动区的固体密度随高度的增加而增加,环流区的密度比松堆密度大3%~10%.颗粒的磨损和夹带随着气速的增大而增大,在稳定有序的喷动状态下变得最小.  相似文献   

9.
狭缝式矩型喷动床中多粒度颗粒体系的最小喷动速度   总被引:6,自引:1,他引:5  
在150 mm×50 mm×1100 mm的矩形喷动床中,采用宽度为2, 4, 6 mm 的3种狭缝式气体分布板,研究了单一粒度组成和多粒度组成玻璃珠的最小喷动速度. 实验证明,矩形喷动床的最小喷动速度与物料的粒度和组成有关. 给出了最小喷动速度与颗粒粒径和粒度组成的关联式,作出了多粒度组成颗粒体系最小喷动速度的相图.  相似文献   

10.
在截面为矩形有机玻璃喷动床内,使用四种粒径的窄筛分球形玻璃珠,以常温水作为喷动和辅助液体。综合考虑床体的几何尺寸、操作参数以及液体和颗粒的物性特征,系统研究带导流管喷动床的最小喷动速度,得出最小喷动速度的经验公式,为设计和操作提供参考。  相似文献   

11.
The addition of liquid water to beds of polystyrene particles exceeding 3 mm in diameter enhanced spouting by causing a decrease in the minimum spouting velocity. While the degree of enhancement is quantitatively comparable to what we reported previously for fluidized beds of large light hydrophobic particles, the mechanism is quite different. Enhancement of spouting takes place because the liquid congregates at the spout‐annulus interface, forming an effective nearly‐impermeable draft tube which then increases the velocity of the gas up the spout.  相似文献   

12.
B. Ren  W. Zhong  B. Jin  Z. Yuan  Y. Lu 《化学工程与技术》2011,34(12):2059-2068
Gas and solid turbulent flow in a cylindrical spout‐fluid bed with conical base were investigated by incorporating various gas‐particle interaction models for two‐way coupling simulation of discrete particle dynamics. The gas flow field was computed by a k‐ϵ two‐equation turbulent model, the motion of solid particles was modeled by the discrete element method. Drag force, contact force, Saffman lift force, Magnus lift force and gravitational force acting on individual particles were considered in the mathematical models. Calculations on the cylindrical spout‐fluid bed with an inside diameter of 152 mm, a height of 700 mm, a conical base of 60° and the ratio of void area of 3.2 % were carried out. Based on the simulation, the gas‐solid flow patterns at various spouting gas velocities are presented. Besides, the changes in particle velocity, particle concentration, collision energy, particle and gas turbulent intensities at different proportions of fluidizing gas to total gas flow are discussed.  相似文献   

13.
李国兵  李明  陈松  黄国强 《化工学报》2013,64(4):1176-1182
在内径为182 mm的喷动流化床中安装内径80 mm的导向管,以平均粒径为2.2 mm的尿素颗粒为物料,对喷动气旁路特性进行了实验研究,分别考察了夹带区高度、导向管长度、喷嘴内径、床层高度、喷动气速和流化气速对喷动气旁路分率的影响,结果表明随着喷动气速的增大,喷动气体旁路分率先增后减。导向管安装高度越高,气体旁路分率越大。床层高度增大喷动气体旁路分率略有降低。而喷嘴直径小于50 mm时气体旁路分率随喷嘴直径增大而提高,在大于50 mm时气体旁路分率随喷嘴直径增大维持不变。当气速较小时,导向管高度增大会引起气体旁路分率增大,引入少量流化气能有效地抑制喷动气旁路。  相似文献   

14.
Hydrodynamic measurements were obtained in a flat-based half-cylindrical column of diameter 0.91 m and inlet orifice diameters of 76 to 114 mm. Beds of 3.5 to 6.7 mm diameter particles with static depths of 0.53 to 1.83 m were spouted with air. In agreement with measurements by earlier workers in smaller columns, it was found necessary to operate with inlet orifice diameters less than about 30 times the mean particle diameter in order to be able to achieve stable spouting. Correlations for minimum spouting velocity developed on small vessels generally gave poor predictions for the large diameter vessel employed in this work and failed to predict the observed dependence of Ums on the static bed height. Substantial dead regions where particles were stagnant were observed in the lower outer portion of the vessel. Other aspects of behaviour studied, including spout diameters and shapes, fountain heights, pressure profiles and gas velocities in the annulus, were qualitatively similar to those in smaller columns, although equations developed for the smaller vessels did not always provide accurate predictions.  相似文献   

15.
A cylindrical gas-liquid-solid spouted bed, driven exclusively by gas flow, has been developed with a high potential for use in biochemical processes, such as a biological wastewater treatment. A plexiglass column with a 152 mm inner diameter was used in combination with a 53 mm inner diameter plexiglass draft tube. Three particle types were studied with densities ranging from 1044 kg/m3-1485 kg/m3 and average particle sizes ranging from 0.7-2.5 mm. Four flow regimes were observed when increasing the gas velocity, including fixed bed, semispouted bed, full spouted bed, and internal circulating fluidized bed. The transition gas velocities between those regimes were experimentally measured and termed as minimum spouting velocity, full spouting velocity, and minimum circulating velocity, respectively. A measurement of the downward particle flux in the annulus was used to identify the minimum spouting velocity, while the particle velocity and dense phase retraction in the annulus were monitored for the full spouting and minimum circulating velocities. All regime transition velocities increased with more dense particles and longer draft tubes. The minimum spouting velocity and full spouting velocity were not affected when varying the nozzle-tube gap, while the minimum circulating velocity increased with longer nozzle-tube gaps. Experiments without a draft tube were carried, though the spouting stability was significantly reduced without the draft tube.  相似文献   

16.
加压喷动床中细颗粒喷动特性   总被引:4,自引:0,他引:4       下载免费PDF全文
在内径分别为 186mm和 80mm的加压喷动床中 ,以空气为喷动介质 ,在 10 1~ 70 0kPa的压力范围内考察了几种不同粒度的细颗粒在加压下的喷动特性 .研究结果表明在不同的Ret 内压力对最小喷动速度的影响不同 .实验还发现 ,随着压力的升高 ,喷动区直径增大 ,稳定操作区域增大 ,加压可明显改善喷动床的操作稳定性  相似文献   

17.
The similarity and difference between the flat‐bottom and cone‐bottom cylindrical spouted beds, conical spouted beds and vertical upward jets in fluidized beds have been analyzed in this paper based on the effects of geometrical parameters on the minimum spouting velocity and operating stabilities of the spouted beds. The effect of angle on minimum spouting velocity was found to be only significant within the range of 30 to 60 degrees cone angles. Minimum spouting velocity in deep cylindrical spouted beds was proportional to the square root of the static bed height, but was proportional to the static bed height in conical spouted beds and large cylindrical spouted beds with small height‐to‐diameter ratio. The relationship between the minimum spouting velocity and the static bed height was consistent with that between jet velocity and the vertical jet penetration length in jetting fluidized beds.  相似文献   

18.
Experiments were carried out in a half slot-rectangular spouted bed to investigate the effects of slot width and lower section basal angle on column hydrodynamics. Flow regimes, minimum spouting velocity, spouting and maximum pressure drops, and maximum spoutable bed height were determined for 4 mm diameter polyethylene particles. The results are compared with those for conventional cylindrical and rectangular spouted beds. Correlations for each hydrodynamic parameter are developed and compared with equations available in the literature.  相似文献   

19.
This paper presents the results from an extensive experimentation on polyester chips heating, crystallization and upgrading in three different size spouted bed units: a cylindrical 0.15 m diameter × 1.3 m tall, a 0.35 m square‐based × 2.1 m tall parallelepiped and a sextuple multi‐spouting 0.7 × 1.05 m2 demonstration reactor for solid state post‐polymerization. The first apparatus was finalized to measuring several process operating variables (maximum gas temperature at the inlet, overall heat transfer coefficient and particle agglomeration tendency); the second unit provided the hydrodynamical data necessary to scale‐up the system, insert into a PET upgrading process of 30 ton/day operating capacity and partially replace a bubbling fluidized bed heating/crystallizing unit. The ultimate goal of the project consisted in intensifying the process design by saving gas compression and thermal energy. The hydrodynamical findings of the squared modular unit were compared against several existing correlations: Manurung's equations for the maximum pressure drop and the pressure drop at stable spouting required a minimal alteration; Mathur and Gishler's equation properly fitted the experimental minimum spouting velocity. The continuously operating multiple spouting apparatus showed that regulating the solids level was an issue mainly due to the very large particle throughput, if related to the mixing efficiency of each module; reciprocal interference between spouted bed cells was manifested.  相似文献   

20.
Two slotted two-dimensional spouted bed units with flexible bed dimensions were used with draft plates to study spouting pressure drop and minimum spouting superficial velocity. The data were collected while varying slant angle, spout width, separation distance, length of bed, height of bed, and size of bed (geometrical similarity) using shelled corn, soybean, and wheat. The variables which affect the spouting pressure drop and air flow through the beds are discussed. Empirical correlations are developed following the principles of dimensional analysis and similitude. The developed correlations agree closely with the collected data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号