首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel enzymatic production system of optically pure β‐hydroxy α‐amino acids was developed. Two enzymes were used for the system: an N‐succinyl L ‐amino acid β‐hydroxylase (SadA) belonging to the iron(II)/α‐ketoglutarate‐dependent dioxygenase superfamily and an N‐succinyl L ‐amino acid desuccinylase (LasA). The genes encoding the two enzymes are part of a gene set responsible for the biosynthesis of peptidyl compounds found in the Burkholderia ambifaria AMMD genome. SadA stereoselectively hydroxylated several N‐succinyl aliphatic L ‐amino acids and produced N‐succinyl β‐hydroxy L ‐amino acids, such as N‐succinyl‐L ‐β‐hydroxyvaline, N‐succinyl‐L ‐threonine, (2S,3R)‐N‐succinyl‐L ‐β‐hydroxyisoleucine, and N‐succinyl‐L ‐threo‐β‐hydroxyleucine. LasA catalyzed the desuccinylation of various N‐succinyl‐L ‐amino acids. Surprisingly, LasA is the first amide bond‐forming enzyme belonging to the amidohydrolase superfamily, and has succinylation activity towards the amino group of L ‐leucine. By combining SadA and LasA in a preparative scale production using N‐succinyl‐L ‐leucine as substrate, 2.3 mmol of L ‐threo‐β‐hydroxyleucine were successfully produced with 93% conversion and over 99% of diastereomeric excess. Consequently, the new production system described in this study has advantages in optical purity and reaction efficiency for application in the mass production of several β‐hydroxy α‐amino acids.

  相似文献   


2.
An organocatalytic approach for the stereoselective synthesis of 3,4‐dihydrocoumarins with an α,α‐disubstituted amino acid moiety incorporated is presented. The developed methodology is based on the cascade reaction between α‐substituted azlactones and 2‐hydroxychalcones. It is initiated by a chiral Brønsted base‐catalyzed enantio‐ and diastereoselective Michael reaction followed by the azlactone ring opening to construct a 3,4‐dihydrocoumarin framework. Products bearing two adjacent stereogenic centers, one being quaternary, were formed with high enantioselectivities and excellent diastereoselectivities. Furthermore, the complete regioselectivity of the new cascade reactivity is worthy of notice.

  相似文献   


3.
An efficient and generally applicable protocol for decarboxylative coupling of α,α‐difluoroarylacetic acids with ethynylbenziodoxolone (EBX) reagents has been developed, affording α,α‐difluoromethylated alkynes bearing various functional groups in moderate to excellent yields. Remarkably, this potassium persulfate (K2S2O8)‐promoted reaction employs water as solvent under transition metal‐free conditions, thus providing a green synthetic approach to α,α‐difluoromethylated alkynes.

  相似文献   


4.
The first catalytic synthesis of β,γ‐alkynyl α‐amino acid derivatives was achieved by direct addition of terminal alkynes to α‐imino esters in the presence of an Ag(I) salt under mild reaction conditions.  相似文献   

5.
The high enantioselective rhodium‐catalyzed hydroformylation of 1,1‐disubstituted allylphthalimides has been developed. By employing chiral ligand 1,2‐bis[(2S,5S)‐2,5‐diphenylphospholano]ethane [(S,S)‐Ph‐BPE], a series of β3‐aminoaldehydes can be prepared with up to 95% enantioselectivity. This asymmetric procedure provides an efficient alternative route to prepare chiral β3‐amino acids and alcohols.  相似文献   

6.
The hydrogenation of carboxylic acid derivatives at room temperature was investigated. With a mixed Rh/Pt oxide (Nishimura catalyst), low to medium activity was observed for various α‐amino and α‐hydroxy esters. At 100 bar hydrogen pressure and 10% catalysts loading, high yields of the desired amino alcohols and diols were obtained without racemization. The most suitable α‐substituents were NH2, NHR, and OH, whereas β‐NH2 were less effective. Usually, aromatic rings were also hydrogenated, but with the free bases of amino acids as substrates, some selectivity was observed. No reaction was found for α‐NR2, α‐OR, and unfunctionalized esters; acids and amides were also not reduced under these conditions. A working hypothesis for the mode of action of the catalyst is presented.  相似文献   

7.
Chemoenzymatic dynamic kinetic resolution of β‐hydroxy nitriles 1 has been carried out using Candida antarctica lipase B and a ruthenium catalyst. The use of a hydrogen source to depress ketone formation in the dynamic kinetic resolution yields the corresponding acetates 2 in good yield and high enantioselectivity. It is shown that the ruthenium catalyst and the enzyme can be recycled when used in separate reactions. We also report on the preparation of various enantiomerically pure β‐hydroxy acid derivatives and γ‐amino alcohols from 1 and 2. The latter compounds were also used to establish the correct absolute configuration of 1 and 2.  相似文献   

8.
In the presence of the readily available quinine‐derived catalyst 4d , highly diastereo‐ and enantioselective Mannich reactions of tosyl‐protected imines and α‐isothiocyanato imides proceeded to afford the protected α,β‐diamino acids, useful building blocks for natural products and biologically active compounds, in good to excellent yields.  相似文献   

9.
An efficient strategy for a high‐yielding and stereoselective synthesis of α‐trifluoromethyl unsaturated carboxylic acids directly from the reactions of 3,3,3‐trifluoropropanoic acid (CF3CH2COOH) with various aryl aldehydes in the presence of titanium tetrachloride (TiCl4) is reported here for the first time, which is a valuable expansion for the classical Knoevenagel reaction. Because these compounds may have potential applications in organic electronics and can be easily converted to the corresponding fluorinated alcohols and amino acids with excellent bioactivity, this route should be a good choice for the preparation of α‐trifluoromethyl‐containing derivatives.  相似文献   

10.
Glycine‐ɛ‐caprolactone‐based and α‐alanine‐ɛ‐caprolactone‐based polyesteramides with a strong tendency to form alternating sequences (degree of randomness = 1.64 and 1.31) were synthesized by melt polycondensation of intermediate hydroxy‐ and ethyl ester‐terminated amides. These intermediates were synthesized by the reaction of equimolar amounts of ɛ‐caprolactone and glycine or L‐α‐alanine ethyl esters in mild conditions. The structure and microstructure of these polyesteramides are discussed on the basis of an in‐depth nuclear magnetic resonance study. Both polyesteramides are semi‐crystalline, but the glycine‐based one presents the highest melting enthalpy. This polyesteramide also exhibits higher Young's modulus and stress at break than its α‐ and β‐alanine counterparts. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44220.  相似文献   

11.
A method for the preparation of 11α‐hydroxy derivatives of lithocholic and chenodeoxycholic acids, recently discovered to be natural bile acids, is described. The principal reactions involved were (1) elimination of the 12α‐mesyloxy group of the methyl esters of 3α‐acetate‐12α‐mesylate and 3α,7α‐diacetate‐12α‐mesylate derivatives of deoxycholic acid and cholic acid with potassium acetate/hexamethylphosphoramide; (2) simultaneous reduction/hydrolysis of the resulting △11‐3α‐acetoxy and △11‐3α,7α‐diacetoxy methyl esters with lithium aluminum hydride; (3) stereoselective 11α‐hydroxylation of the △11‐3α,24‐diol and △11‐3α,7α,24‐triol intermediates with B2H6/tetrahydrofuran (THF); and (4) selective oxidation at C‐24 of the resulting 3α,11α,24‐triol and 3α,7α,11α,24‐tetrol to the corresponding C‐24 carboxylic acids with NaClO2 catalyzed by 2,2,6,6‐tetramethylpiperidine 1‐oxyl free radical (TEMPO) and NaClO. In summary, 3α,11α‐dihydroxy‐5β‐cholan‐24‐oic acid and 3α,7α,11α‐trihydroxy‐5β‐cholan‐24‐oic acid have been synthesized and their nuclear magnetic resonance (NMR) spectra characterized. These compounds are now available as reference standards to be used in biliary bile acid analysis.  相似文献   

12.
A simple and efficient ligand‐free nickel‐based catalytic system has been developed for the 1,4‐addition of arylboronic acids to α,β‐unsaturated carbonyl compounds. With catalyst loadings of 1–2 mol%, a series of 1,4‐adducts from chalcones and cinnamates was obtained in moderate to excellent yields within 5–30 min under a nitrogen atmosphere and microwave irradiation. The 1,4‐addition of arylboronic acids to acrylates is less efficient.

  相似文献   


13.
A copper(I)‐catalyzed addition of alkylborane reagents to α‐iminoacetates has been developed to assemble both acyclic and cyclic α‐branched α‐amino carboxylic acid derivatives in good yields. A wide variety of unactivated alkenes are well tolerated in this transformation.

  相似文献   


14.
Poly‐α,β‐(3‐hydroxypropyl)‐DL ‐aspartamide (PHPA) was synthesized by the ring‐open reaction of polysuccinimide (PSI) and 3‐hydroxypropylamine. The polymer was characterized by 1H‐NMR, 13C‐NMR, FTIR, and GPC. Mark–Houwink coefficients were obtained from viscometry and GPC measurements, K = 5.53 × 10−3 and α = 0.78 in water. The acute toxicity of PHPA was examined and it revealed no death in ICR mice up to the dose treated of 15.3 kg/kg, and hematological parameters showed no significant difference between treated and control animals. The potential use of PHPA as a drug carrier was also investigated. In a typical case, a contraceptive drug, norethindrone (NET), was bonded to PHPA, and the drug sustained released as long as 120 days an in vitro test. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2411–2417, 2000  相似文献   

15.
In the present study the derivatization of two water‐soluble synthetic polymers, α,β‐poly(N‐2‐hydroxyethyl)‐DL ‐aspartamide (PHEA) and α,β‐polyasparthylhydrazide (PAHy), with glycidyltrimethylammonium chloride (GTA) is described. This reaction permits the introduction of positive charges in the macromolecular chains of PHEA and PAHy in order to make easier the electrostatic interaction with DNA. Different parameters affect the reaction of derivatization, such as GTA concentration and reaction time. PHEA reacts partially and slowly with GTA; on the contrary the reaction of PAHy with GTA is more rapid and extensive. The derivatization of PHEA and PAHy with GTA is a convenient method to introduce positive groups in their chains and it permits the preparation of interpolyelectrolyte complexes with DNA. © 2000 Society of Chemical Industry  相似文献   

16.
A highly efficient strategy for the synthesis of a series of chiral bisaminophosphine ligands was well established with several remarkable features. The synthetic utility of these ligands was explored for rhodium‐catalyzed asymmetric hydrogenations of α‐dehydroamino acid esters. Up to 98% ee values were achieved for the enantioselective synthesis of aminocarboxylic acids and their derivatives, which are very important chiral building blocks for the synthesis of a variety of natural products and biologically active molecules.  相似文献   

17.
A new enantioselective α‐alkylation of α‐tert‐butoxycarbonyllactams for the construction of β‐quaternary chiral pyrrolidine and piperidine core systems is reported. α‐Alkylations of N‐methyl‐α‐tert‐butoxycarbonylbutyrolactam and N‐diphenylmethyl‐α‐tert‐butoxycarbonylvalerolactam under phase‐transfer catalytic conditions (solid potassium hydroxide, toluene, −40 °C) in the presence of (S,S)‐3,4,5‐trifluorophenyl‐3,3′,5,5′‐tetrahydro‐2,6‐bis(3,4,5‐trifluorophenyl)‐4,4′‐spirobi[4H‐dinaphth[2,1‐c:1′,2′‐e]azepinium] bromide [(S,S)‐NAS Br] (5 mol%) afforded the corresponding α‐alkyl‐α‐tert‐butoxycarbonyllactams in very high chemical (up to 99%) and optical yields (up to 98% ee). Our new catalytic systems provide attractive synthetic methods for pyrrolidine‐ and piperidine‐based alkaloids and chiral intermediates with β‐quaternary carbon centers.  相似文献   

18.
It was shown that the catalytic hydrogenation of α‐iminophosphonates by molecular hydrogen can serve as a convenient method for the synthesis of racemic and optically active α‐aminophosphonates. Up to 94% ee was achieved in the rhodium‐catalyzed enantioselective hydrogenation using chiral ligand (R)‐BINAP.  相似文献   

19.
We describe a simple and efficient enzymatic tandem reaction for the preparation of enantiomerically pure β‐phenylalanine and its analogues from the corresponding racemates. In this process, phenylalanine aminomutase (PAM) catalyzes the stereoselective isomerization of (R)‐β‐phenylalanines to (S)‐α‐phenylalanines, which are in situ transformed to cinnamic acids by phenylalanine ammonia lyase (PAL). Preparative scale conversions are done with a mutated PAM with enhanced catalytic activity.  相似文献   

20.
Racemic cis‐10‐azatetracyclo[7.2.0.12,6.14,8]tridecan‐11‐one was prepared from homoadamant‐4‐ene by chlorosulfonyl isocyanate addition. The transformation of the β‐lactam to the corresponding β‐amino ester followed by Candida antarctica lipase A‐catalyzed enantioselective (E>>200) N‐acylation with 2,2,2‐trifluoroethyl butanoate afforded methyl (1R,4R,5S,8S)‐5‐aminotricyclo[4.3.1.13,8]undecane‐4‐carboxylate and the (1S,4S,5R,8R)‐butanamide with>99% ee at 50% conversion. Alternatively, transformation of the β‐lactam to the corresponding N‐hydroxymethyl‐β‐lactam and the following Pseudomonas cepacia (currently Burkholderia cepacia) lipase‐catalyzed enantioseletive O‐acylation provided the (1S,4S,6R,9R)‐alcohol (ee=87%) and the corresponding (1R,4R,6S,9S)‐butanoate (ee>99%). In the latter method, competition for the enzyme between the (1R,4R,6S,9S)‐butanoate, 2,2,2‐trifluoroethyl butanoate and the hydrolysis product, butanoic acid, tended to stop the reaction at about 45% conversion and finally gave racemization in the (1S,4S,6R,9R)‐alcohol with time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号