首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a half‐bridge resonant DC/DC converter with constant output voltage is proposed, which possesses good soft‐switching characteristics. At rated operating point, the switches can operate almost without switching‐on and off losses. Further, at whole working range, both zero‐voltage‐switching mode of switches and zero‐current‐switching mode of diodes are maintained. Thus, the converter can achieve a high efficiency. Experimental results verify the low switching losses and high efficiency characteristics based on a 200 W prototype. System efficiency is as high as 96% and always above 90% when output power changes from 100% to 20%. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
An interleaved DC‐DC converter with soft switching technique is presented. There are two converter modules in the adopted circuit to share the load power. Since the interleaved pulse‐width modulation (PWM) is adopted to control two circuit modules, the ripple currents at input and output sides are naturally reduced. Therefore the input and output capacitances can be reduced. In each circuit module, a conventional boost converter and a voltage doubler configuration with a coupled inductor are connected in series at the output side to achieve high step‐up voltage conversion ratio. Active snubber connected in parallel with boost inductor is adopted to limit voltage stress on active switch and to release the energy stored in the leakage and magnetizing inductances. Since asymmetrical PWM is used to control active switches, the leakage inductance and output capacitance of active switches are resonant in the transition interval. Thus, both active switches can be turned on at zero voltage switching. The resonant inductance and output capacitances at the secondary side of transformer are resonant to achieve zero current switching turn‐off for rectifier diodes. Therefore, the reverse recovery losses of fast recovery diodes are reduced. Finally, experiments based on a laboratory prototype rated at 400 W are presented to verify the effectiveness of the proposed converter. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents a soft switching converter with three buck‐type active clamp circuits (or asymmetric half‐bridge circuits) to achieve the functions of the low power rating on the transformers and power semiconductors and low current rating on the rectifier diodes and output inductors. Three half‐bridge circuits are stacked at the high voltage side to reduce the voltage stress of each power switch at one‐half of input voltage and connected in parallel at the low voltage side to share load current and reduce the current rating on each magnetic component and the rectifier diode. Thus, the size of the output chokes is reduced. In each half‐bridge converter, the asymmetric pulse‐width modulation is adopted to control power switches. Power MOSFETs can be turned on with zero voltage during the transition interval due to the resonant behavior by the output capacitance of MOSFETs and the leakage inductance (or external inductance) of transformers. Experiments based on a laboratory prototype with 1 kW rated power are provided to demonstrate the performance of proposed converter. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, a pulse width modulation DC‐DC converter with high step‐up voltage gain is proposed. The proposed converter achieves high step‐up voltage gain with appropriate duty ratio, coupled inductor, and voltage multiplier technique. The energy stored in the leakage inductor of the coupled inductor can be recycled in the proposed converter. Moreover, because both main and auxiliary switches can be turned on with zero‐voltage switching, switching loss can be reduced by soft‐switching technique. So the overall conversion efficiency is improved significantly. The theoretical steady‐state analyses and the operating principles of the proposed converter are discussed in detail for both continuous conduction mode and discontinuous conduction mode. Finally, a laboratory prototype circuit of the proposed converter is implemented to verify the performance of the proposed converter. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
The focus of this paper is on a simple half‐bridge converter that performs power factor correction (PFC) using current sensorless control. Current sensors increase cost, auxiliary power required, conduction losses, and volume of the PFC converter. Moreover, measurement of high frequency current is demanding, especially in cost‐sensitive applications. The PFC converter proposed combines simple half‐bridge topology and improved current sensorless‐control algorithm that takes into account conduction losses. These losses influence volt‐second balance in the input inductor and result in distorted grid current shape. Their effect is especially evident in half‐bridge converter, where input inductor operates with high voltage swing. The current sensorless control method proposed compensates this influence and allows achieving sinusoidal current shape. First, the phenomenon of current distortion was shown with numerical simulation in PSIM package. Experimental prototype rated for 350 W power was built to verify theoretical and simulation results. Experimental results are in good agreement with those obtained with simulation and theoretically. The PFC converter proposed features low cost of realization and can be used in consumer equipment for connection to the grid. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents a high step‐up soft switched dc–dc converter having the feature of current ripple cancelation in the input stage that is specialized for power conditioning of fuel cell systems. The converter comprises a special half‐bridge converter and a rectifier stage based upon the voltage‐doubler circuit, in which the coupled‐inductor technology is amalgamated with switched‐capacitor circuit. The input current with no ripple is the principal characteristics of this topology that is achieved by utilizing a small coupled inductor. In addition, the low clamped voltage stress across both power switches and output diodes is another advantage of the proposed converter, which allows employing the metal–oxide–semiconductor field‐effect transistors with minuscule on‐state resistance and diodes with lower forward voltage‐drop, and thereby, the semiconductors' conduction losses diminish considerably. The inherent nature of this topology handles the switching scheme based on the asymmetrical pulse width modulation in order for switches to establish the zero voltage switching, leading to lower switching losses. Besides, because of the absence of the reverse‐recovery phenomenon, all diodes turn off with zero current switching. At last, a 250‐W laboratory prototype with the input voltage 24 V and output voltage 380 V is implemented to verify the especial features of the proposed converter. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
A new soft switching three‐level converter with two DC/DC circuits in the primary side and current double rectifiers in the secondary side is presented to realize the zero‐voltage switching operation, reduce the transformer secondary winding turns and the output current ripple, and lessen the voltage rating of rectifier diodes. Two DC/DC pulse‐width modulation circuits sharing same power switches with interleaved half switching cycle are adopted in the proposed converter to reduce the current rating of transformer primary windings. Two inductors and four diodes are adopted in the secondary side to achieve current double rectifier, reduce output ripple current, and decrease the transformer secondary winding turns. Based on the pulse‐width modulation scheme, the power switchers can be turned on at zero‐voltage switching operation. Laboratory experiments with a 1.44 kW prototype are provided to verify the theoretical analysis. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
新型ZVS全桥DC/DC变换器   总被引:4,自引:2,他引:2  
针对移相全桥软开关变换器存在的滞后臂难以实现零电压开关(ZVS)和占空比丢失的问题,提出了一种新型的全桥移相零电压变换器拓扑,采用3个等效的高频变压器替代传统的高频变压器,将阻断电容分成2个等效电容串联在桥臂中点之间,增加1个辅助电感实现滞后臂的ZVS。论述了所提出变换器的电路结构、工作原理和关键参数的设计。根据新的拓扑,设计了一台9kW的实验样机,实验结果证明了该电路拓扑能在宽的负载或输出范围内实现软开关。  相似文献   

9.
两级式变换器比单级式变换器更适合应用在输入输出变比较高的DC/DC变换场合。研究了一种Buck+LLC谐振全桥的电路拓扑,阐述了LLC谐振全桥的原理和特性,在分析了这种两级变换器的稳定性基础上,通过合理选取前级Buck电路的输出电压、后级LLC谐振全桥变压器变比和谐振元件参数,提高了两级变换的效率。基于上述分析,采用该拓扑结构试制了一台功率1 kW,210~270 V输入,27 V输出的原理样机,并给出了实验结果。  相似文献   

10.
Several new topologies of single‐switch non‐isolated DC–DC converters with wide conversion gain and reduced semiconductor voltage stress are proposed in this paper. Most of the proposed topologies are derived from the conventional inverse of SEPIC (Zeta) converter. The proposed topologies can operate with larger switch duty cycles compared with the existing single switch topologies, hence, making them well suitable for high step‐down voltage conversion applications. With extended duty cycle, the current stress in the active power switch is reduced, leading to a significant improvement of the system losses. Moreover, the active power switch in some of the proposed topologies is utilized much better compared to the conventional Zeta and quadratic‐buck converters. The principle of operation, theoretical analysis, and comparison of circuit performances with other step‐down converters are discussed regarding voltage and current stress and switch silicon utilization. Finally, simulation and experimental results for a design example of a 50 W/5 V at 42‐V input voltage operating at 50 kHz will be provided to evaluate the performance of the proposed converters. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
An interleaved half‐bridge converter is presented for high input voltage application. The features of the proposed converter are zero voltage switching (ZVS) turn‐on for all active switches, ripple current reduction at output side, load current sharing and load voltage regulation. Two half‐bridge converters connected in series and two split capacitors are used to limit the voltage stress of each power switch at one‐half of input DC bus voltage. Thus, active switches with low voltage stress can be used at high input voltage application. On the other hand, the output sides of two half‐bridge converters are connected in parallel to share the load current and reduce the current stresses of the secondary windings and the rectifier diodes. Since two half‐bridge converters are operated with interleaved pulse‐width modulation (PWM), the output ripple current can partially cancel each other such that the resultant ripple current at output side is reduced and the size of output inductors can be reduced. In each half‐bridge converter, asymmetrical PWM scheme is used to regulate the output voltage. Based on the resonant behavior by the output capacitance of MOSFETs and the leakage inductance (or external inductance) of transformers, active switches can be turned on at ZVS during the transition interval. Thus, the switching losses of power MOSFETs are reduced. The proposed converter can be applied for high input voltage applications such as three‐phase 380‐V utility system. Finally, experiments based on a laboratory prototype with 960‐W rated power are provided to demonstrate the performance of proposed converter. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
This paper presents a two‐transformer LLC series resonant converter (SRC), which is derived from incorporating two identical converters. The proposed converter allows a low‐profile power supply design for liquid crystal display (LCD) TVs and servers. The presented converter can equally share the total load current between two transformers and the output rectifier modules. Therefore, the heat problem can be effectively relieved. The steady‐state analysis and design of this new two‐transformer LLC SRC are described. The experimental results are recorded for a prototype converter with an output voltage of 12thinspaceV, an output power of 300 W, and a resonant frequency of 74 kHz. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
在Buck-Boost隔离直流转换器宽范围输入电压的条件下,分析了典型的全桥boost转换器拓扑结构,由于存在的谐振电感包括漏电感,全桥Boost转换器只能采用双边沿调制[1],该转换器采用UC3895作为控制器,对全桥单元采用移相转换控制的方式,为了提高全桥boost转换器系统的可靠性和效率,采用三模式两频率控制方式[2],在输入宽范围电压的情况下,最高输入500V,输出360V,采用Matlab软件进行仿真,实验结果表明输入电压平均效率范围是96.2%,最高效率能达到97.5%。  相似文献   

14.
单级隔离升压半桥DC/DC变换器软开关条件研究   总被引:1,自引:0,他引:1  
为了获得单级隔离型升压半桥DC/DC变换器的软开关工作条件.对其工作原理和换流过程进行分析.通过稳态参数计算、开关管关闭工作模态的等效电路解析以及微分方程运算,指出了其软开关过程本质上是变压器漏感和开关管并联电容准谐振过程,并获得了实现软开关应满足的特征阻抗与变换器稳态参数之间的不等式关系,该不等式可以作为设计该变换器...  相似文献   

15.
We present a three‐phase PWM converter without AC voltage and AC current sensors. The phase angle used in the control system is adjusted by using a PLL controller without sensing AC voltage. To prevent overcurrent at startup, the initial phase angle of the source voltage is estimated from the shunt current using a novel strategy. Furthermore, the phase currents can be reconstructed from the shunt current without any modification of the PWM pattern. To reduce the effect of current ripple, the shunt current is sampled twice for every phase in one PWM period and the sample timings are carefully adjusted. All of the proposed control schemes can be implanted using a single chip microprocessor (SH7046, Renesas Tech.). Simulation and experimental results with a 5‐kW prototype confirmed that the schemes worked well. © 2010 Wiley Periodicals, Inc. Electr Eng Jpn, 172(4): 48–57, 2010; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20983  相似文献   

16.
在电力电子变压器和直流配电网等领域,需要采用DC/DC变换器双向传输能量。为了适用不同电压等级电网,研究适用于ISOS拓扑的双向DC/DC变换器,采用双向LLC谐振实现能量双向流动时开关器件的ZVS和准ZCS,使用均压电阻实现系统的稳态均压。首先描述双向LLC谐振变换器的工作波形,然后采用基波分析法对电路的增益特性进行分析。将适用于ISOS拓扑的增益特性及软开关的实现条件作为双向LLC谐振网络设计的依据,并对高频隔离变压器和ISOS拓扑的均压电路进行分析与设计。最后研制2个6.25 kW的变换器,对所提出的设计方法进行验证。试验证实变换器能够实现能量双向传输时开关器件的ZVS和准ZCS,并且能量双向流动时变换器具有相同的增益特性,同时变换器的串联不均压度小于3%。  相似文献   

17.
新型高压变频器设计   总被引:1,自引:0,他引:1  
开发了一款可能量反馈的级联型高压变频器,其电网侧变换器摒弃了传统的二极管不可控整流器,而采用三相PWM整流器为电机侧级联型逆变器各H桥单元提供独立的直流电源,使得在不引入多脉波整流技术的情况下,就能够实现单位功率因数的整流和逆变,且网侧电流呈正弦,谐波含量小.为验证该结构变频器适合应用于高压大功率交流变频调速领域,以高...  相似文献   

18.
In this paper, a new soft switching direct current (DC)–DC converter with low circulating current, wide zero voltage switching range, and reduced output inductor is presented for electric vehicle or plug‐in hybrid electric vehicle battery charger application. The proposed high‐frequency link DC–DC converter includes two resonant circuits and one full‐bridge phase‐shift pulse‐width modulation circuit with shared power switches in leading and lagging legs. Series resonant converters are operated at fixed switching frequency to extend the zero voltage switching range of power switches. Passive snubber circuit using one clamp capacitor and two rectifier diodes at the secondary side is adopted to reduce the primary current of full‐bridge converter to zero during the freewheeling interval. Hence, the circulating current on the primary side is eliminated in the proposed converter. In the same time, the voltage across the output inductor is also decreased so that the output inductance can be reduced compared with the output inductance in conventional full‐bridge converter. Finally, experiments are presented for a 1.33‐kW prototype circuit converting 380 V input to an output voltage of 300–420 V/3.5 A for battery charger applications. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
This paper presents a parallel zero‐voltage switching (ZVS) DC–DC converter with series‐connected transformers. In order to increase output power, two transformers connected in series are used in the proposed converter. Two buck‐type converters connected in parallel have the same switching devices. The primary windings of series‐connected transformers can achieve the balanced secondary winding currents. The current doubler rectifiers with ripple current cancellation are connected in parallel at the output side to reduce the current stress of the secondary winding. Thus, the current ripple on the output capacitor is reduced, and the size of the output choke and output capacitor are reduced. Only two switches are used in the proposed circuit instead of four switches in the conventional parallel ZVS converter to achieve ZVS and output current sharing. Therefore, the proposed converter has less power switches. The ZVS turn‐on is implemented during the commutation stage of two complementary switches such that the switching losses and thermal stresses on the semiconductors are reduced. Experimental results for a 528‐W (48 V/11 A) prototype are presented to prove the theoretical analysis and circuit performance. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
提出了一种L-R复合型桥式DC/DC变换器。该变换器在传统半桥LLC谐振变换器的基础上,仅增加一组L桥臂,有高、低2种电压增益模式。在高电压增益模式,采用脉冲宽度调制,通过L桥臂对电感线性储能,获得了比传统LLC谐振变换器更高的电压增益,具有更宽的输出电压范围,且电压增益受励磁电感影响小,电路工作无回馈电流。在低电压增益模式,采用脉冲频率调制,电压增益特性与传统LLC谐振变换器接近,但有更小的回馈电流和循环电流。详细分析了所提拓扑2种电压增益模式的工作原理,推导出增益公式,并与传统拓扑进行对比。最后搭建了一台输入电压为220 V、输出电压为100~160 V的实验样机,实验结果验证了理论分析的正确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号