首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The seed oil of Arum maculatum has been found to contain 13‐phenyltridec‐9‐enoic (0.4%) and 15‐phenyl‐pentadec‐9‐enoic (1%) acids, detected by gas chromatographymass spectrometry of the picolinyl ester and related derivatives.  相似文献   

2.
α‐Butyl‐ω‐N,N‐dihydroxyethylaminopropylpolydimethylsiloxane, a monotelechelic polydimethylsiloxane with a diol‐end group, which is used to prepare polyurethane–polysiloxane graft polymer, was successfully synthesized. The preparation included five steps, which are hydroxyl protection, alkylation, anionic ring‐opening polymerization, hydrosilylation, and deprotection. The products were characterized by FTIR, GC, LC‐MS, 1H NMR, and elemental analysis. The results showed that each step was successfully carried out and the targeted products were synthesized in all cases. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

3.
In this study, 9‐(4‐nitrophenylsulfonyl)‐9H‐carbazole (NPhSCz) monomer was chemically synthesized. The monomer characterization was performed by Fourier transform infrared spectroscopy, 1H‐NMR, and melting point analysis. Two different electropolymerizations of NPhSCz were studied on a gold microelectrode (Au electrode) and carbon fiber microelectrodes (CFMEs) in a 0.1M sodium perchlorate (NaClO4)/acetonitrile solution. The electropolymerization experiments were done from 1 to 4 mM. The characterizations of two different modified electrodes of poly[9‐(4‐nitrophenylsulfonyl)‐9H‐carbazole] [poly(NPhSCz)] were performed by various techniques, including cyclic voltammetry, scanning electron microscopy–energy‐dispersive X‐ray analysis, and electrochemical impedance spectroscopy (EIS). The effects of the initial monomer concentrations (1, 2, 3, and 4 mM) were examined by EIS. The capacitive behaviors of the modified electrodes were defined via Nyquist, Bode magnitude, Bode phase, and admittance plots. The variation of the low‐frequency capacitance (CLF) and double‐layer capacitance (Cdl) values are presented at different initial monomer concentrations. Poly(NPhSCz)/CFME was more capacitive (CLF = 6.66 F/cm2 and Cdl ≈ 28 mF) than the Au electrode (CLF = 6.53 F/cm2 and Cdl ≈ 20 mF). An equivalent circuit model of R[QR(CR)(RW)](CR), (R: Current, Q: Constant phase element, C: Double layer capacitance, W: Warburg impedance), was used to fit the theoretical and experimental data. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
5.
A direct diastereoselective synthesis approach of important 9H‐pyrrolo[1,2‐a]azepin‐9‐amines was established via base‐promoted [4+3] annulation between donor–acceptor reagents derived from 1H‐pyrrole‐2‐carbaldehydes and alkyl 2‐aroyl‐1‐chlorocyclopropanecarboxylates. This transition metal‐free domino reaction proceeded quickly under mild basic conditions, affording potentially bioactive azepine derivatives in moderate to high yields with high diastereoselectivities (up to >20:1).

  相似文献   


6.
In this study, bisphenol A epoxy resin (DGEBA) was chemically modified by 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO), and the molecular structure of the modified epoxy resin was characterized by Fourier transform infrared spectra. The effects of DOPO on liquid oxygen compatibility of DGEBA were calculated using mechanical impact method. The results indicated that epoxy resin (EP‐P1)/4,4‐diaminobisphenol sulfone (DDS) was compatible with liquid oxygen. When compared with EP/DDS, differential scanning calorimetry and thermogravimetry analyses showed that EP‐P1/DDS and EP‐P2/DDS had much higher glass transition temperatures and char yield. X‐ray photoelectron spectroscopic analysis suggested that phosphorus atoms on the surface of EP‐P1/DDS and EP‐P2/DDS could act in the solid phase to restrain the incompatible reaction, which was in accordance with the flame‐retardant mechanism of phosphorus‐containing compounds. The compatibility mechanism of EP‐P1/DDS was further proposed. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40848.  相似文献   

7.
Polyamides (PAs) containing fluorene, oxyether, and diphenyl‐silane moieties in the repeating unit were synthesized in > 85% yield by direct polycondesation between a diamine and four dicarboxylic acids. Alternatively, one PA was synthesized from an acid dichloride. The diamine 4‐[4‐[9‐[4‐(4‐aminophenoxy)‐3‐methyl‐phenyl]fluoren‐9‐yl]‐2‐methyl‐phenoxy]aniline ( 3 ) was obtained from the corresponding dinitro compound, which was synthesized by nucleophilic aromatic halogen displacement from p‐chloronitrobenzene and 9,9‐bis (4‐hydroxy‐3‐methyl‐phenyl)fluorene ( 1 ). Monomers and polymers were characterized by FTIR and 1H, 13C, and 29Si‐NMR spectroscopy and the results were in agreement with the proposed structures. PAs showed inherent viscosity values between 0.14 and 0.43 dL/g, indicative of low molecular weight species, probably of oligomeric nature. The glass transition temperature (Tg) values were observed in the 188–211°C range by DSC analysis. Thermal decomposition temperature (TDT10%) values were above 400°C due to the presence of the aromatic rings in the diamine. All PAs showed good transparency in the visible region (>88% at 400 nm) due to the incorporation of the fluorene moiety. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
In this contribution, 2‐(9H‐carbazol‐9‐yl) ethyl methacrylate (CzEMA) monomer was chemically synthesized. The monomer characterization was performed by FT‐IR, 1H‐NMR, 13C‐NMR, and melting point analysis. The electropolymerization of CzEMA was studied onto carbon fiber microelectrodes (CFMEs) as an active electrode material in 0.1M sodium perchlorate (NaClO4)/acetonitrile (ACN) solution. The electropolymerization experiments were done from 1 mM to 10 mM. The detailed characterization of the resulting electrocoated Poly (CzEMA)/CFME thin films was studied by various techniques, i.e., cyclic voltammetry (CV), Scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). The effects of initial monomer concentrations (1, 3, 5, and 10 mM) during the preparation of modified electrodes were examined by EIS. Capacitive behaviors of modified CFMEs were defined via Nyquist, Bode‐magnitude, and Bode‐phase plots. Variation of capacitance values by initial monomer concentration and specific capacitance values are presented. The highest specific capacitance value electrocoated polymer thin film by CV method in the initial monomer concentration of 5 mM with a charge of 52.74 mC was obtained about 424.1 μF cm?2. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
The 2‐oxo‐tetrahydrofuran‐3‐yl 9H‐carbazole‐9‐carbodithioate (OTCC) mediated reversible addition‐fragmentation chain transfer (RAFT) polymerizations of styrene and methyl acrylate were investigated. The results showed that OTCC was an effective RAFT agent for the polymerizations of styrene and methyl acrylate. The polymerizations exhibited “living”/controlled characters. The resulting carbazole and 2‐oxo‐tetrahydrofuran‐3‐yl groups end‐labeled polymer exhibited stronger fluorescence in N, N‐dimethyl formamide, compared with those of OTCC under the same conditions. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

10.
Nonoxynol‐9 (N‐9) is the most active ingredient in commercially available spermicidal products in the United States. There are many applications of cyclodextrin inclusion complexes (CD‐ICs), but there are no reported studies investigating the formation of and controlled release from a N‐9 spermicide‐CD‐IC. We have successfully formed the inclusion compound between N‐9 and α‐CD using a solution‐heating technique. The N‐9‐α‐CD‐IC was characterized by Fourier Transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and wide angle X‐ray diffraction observations. Silicone elastomer (SILASTIC MDX4‐4210) film embedded with crystalline N‐9‐α‐CD‐IC was prepared and evaluated for its efficacy in the controlled release of N‐9 spermicide against bovine sperm. Silicone elastomer with N‐9‐α‐CD‐IC was as successful in reducing the motility and viability of bovine spermtazoa as silicone elastomer swollen with an equivalent amount of neat N‐9. The permeability of the flexible silicone elastomer apparently enables the N‐9 spermicide to diffuse from its embedded inclusion complex crystals to contact, immobilize, and kill bovine sperm cells. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

11.
Cellulose p‐toluenesulfonic acid esters (TosCell) with degree of substitution (DSTos) between 0.8 and 1.4 were converted with ethylene diamine or tris(2‐aminoethyl)amine. In contrast to procedures published, the conversion was carried out without any solvent, i.e., the reagent (amines) was used as reaction medium yielding readily soluble products. Moreover, the absence of an additional solvent makes the recycling of both not‐consumed amine and precipitant easy. Recycling experiments proofed the possibility of reusing the isolated ethylene diamine. The DS of 6‐deoxy‐6‐(ω‐aminoalkyl)amino groups is between 0.71 and 0.93, which is in accordance with the functionalization pattern of tosyl cellulose and the ability of amines to displace primary tosylate moieties only. Attention must be paid to the precipitant used for the workup procedure; 13C NMR measurements revealed a formation of imine structures in case of precipitation with acetone. Precipitation in 2‐propanol did not lead to any side product. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43987.  相似文献   

12.
ω‐Pyrenyl‐functionalized poly(1,3‐cyclohexadiene) (PCHD) was successfully synthesized by the postpolymerization reaction of poly(1,3‐cyclohexadienyl)lithium (PCHDLi) with 1‐chloromethylpyrene (ClMe‐PY). This postpolymerization reaction consisted of two competitive reactions: the addition reaction of the pyrenyl group, and a hydrogen abstraction reaction (lithiation) as a side reaction. The degree of nucleophilicity of PCHDLi was a very important factor for suppression of the side reaction, and the PCHDLi/amine system, which has high nucleophilicity, produced high ω‐pyrenyl‐functionalization for PCHD. The UV/vis and fluorescence spectra for ω‐pyrenyl‐functionalized PCHD were bathochromically shifted, relative to that of pyrene. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
Inhibition of adenosine A2A receptors has been shown to elicit a therapeutic response in preclinical animal models of Parkinson’s disease (PD). We previously identified the triazolo‐9H‐purine, ST1535, as a potent A2AR antagonist. Studies revealed that ST1535 is extensively hydroxylated at the ω‐1 position of the butyl side chain. Here, we describe the synthesis and evaluation of derivatives in which the ω‐1 position has been substituted (F, Me, OH) in order to block metabolism. The stability of the compounds was evaluated in human liver microsomes (HLM), and the affinity for A2AR was determined. Two compounds, (2‐(3,3‐dimethylbutyl)‐9‐methyl‐8‐(2H‐1,2,3‐triazol‐2‐yl)‐9H‐purin‐6‐amine ( 3 b ) and 4‐(6‐amino‐9‐methyl‐8‐(2H‐1,2,3‐triazol‐2‐yl)‐9H‐purin‐2‐yl)‐2‐methylbutan‐2‐ol ( 3 c ), exhibited good affinity against A2AR (Ki=0.4 nM and 2 nM , respectively) and high in vitro metabolic stability (89.5 % and 95.3 % recovery, respectively, after incubation with HLM for two hours).  相似文献   

14.
In this study, α,ω‐bis(3‐(1‐methoxy‐2‐hydroxypropoxy)propyl)polydimethylsiloxane and α‐N,N‐dihydroxyethylaminopropyl‐ω‐butylpolydimethylsiloxane were used to prepare block and graft waterborne polyureathane–polysiloxane copolymer dispersions. α,ω‐bis(3‐(1‐methoxy‐2‐hydroxypropoxy)propyl)polydimethylsiloxane was synthesized by hydrosilylation, methoxylation and equilibrium reactions; α‐N,N‐dihydroxyethylaminopropyl‐ω‐butylpolydimethylsiloxane was synthesized via hydroxyl protection, alkylation, anionic ring‐opening polymerization, hydrosilylation, and deprotection. Block and graft waterborne polyurethane–polysiloxane copolymer dispersions were prepared by the reaction of poly(propylene glycol) (PPG), toluene diisocyanate (TDI), 2,2‐dimethylol propionic acid (DMPA), 1,4‐butanediol (BDO), α,ω‐bis(3‐(1‐methoxy‐2‐hydroxypropoxy)propyl)polydimethylsiloxane, and α‐N,N‐dihydroxy‐ethylaminopropyl‐ω‐butylpolydimethylsiloxane. The water absorption of block and graft waterborne polyurethane–polysiloxane copolymer films decreased from 163.9 to 40.2% and 17.3%, respectively, when percent of polysiloxane (w/w) increased from 0 to 5%, and the tensile strength of the block waterborne polyurethane–polysiloxane copolymer films decreased while the tensile strength of graft waterborne polyurethane–polysiloxane copolymer films increased with increase of percent of polysiloxane. For graft waterborne polyurethane–polysiloxane films, the tensile strength would decrease when percent of polysiloxane was more than 3%. POLYM. ENG. SCI., 54:805–811, 2014. © 2013 Society of Plastics Engineers  相似文献   

15.
Biotransformation of long‐chain fatty acids into medium‐chain α,ω‐dicarboxylic acids or ω‐aminocarboxylic acids could be achieved with biocatalysts. This study presents the production of α,ω‐dicarboxylic acids (e.g., C9, C11, C12, C13) and ω‐aminocarboxylic acids (e.g., C11, C12, C13) directly from fatty acids (e.g., oleic acid, ricinoleic acid, lesquerolic acid) using recombinant Escherichia coli‐based biocatalysts. ω‐Hydroxycarboxylic acids, which were produced from oxidative cleavage of fatty acids via enzymatic reactions involving a fatty acid double bond hydratase, an alcohol dehydrogenase, a Baeyer–Villiger monooxygenase and an esterase, were then oxidized to α,ω‐dicarboxylic acids by alcohol dehydrogenase (ADH, AlkJ) from Pseudomonas putida GPo1 or converted into ω‐aminocarboxylic acids by a serial combination of ADH from P. putida GPo1 and an ω‐transaminase of Silicibacter pomeroyi. The double bonds present in the fatty acids such as ricinoleic acid and lesquerolic acid were reduced by E. coli‐native enzymes during the biotransformations. This study demonstrates that the industrially relevant building blocks (C9 to C13 saturated α,ω‐dicarboxylic acids and ω‐aminocarboxylic acids) can be produced from renewable fatty acids using biocatalysis.

  相似文献   


16.
2‐(4‐Nitrophenylsulfonyl)ethoxycarbonyl (Nsc) is a useful substitute for the Fmoc group. It is easily removed not only with secondary amines but with tris(aminoethyl)amine (TAEA) and with resin‐bound TAEA, thus allowing for a simplified work‐up: the side products of the deprotection are removed either by extraction with phosphate buffer or by filtration.  相似文献   

17.
High‐throughput screening highlighted 9‐oxo‐9H‐indeno[1,2‐b]pyrazine‐2,3‐dicarbonitrile ( 1 ) as an active inhibitor of ubiquitin‐specific proteases (USPs), a family of hydrolytic enzymes involved in the removal of ubiquitin from protein substrates. The chemical behavior of compound 1 was examined. Moreover, the synthesis and in vitro evaluation of new compounds, analogues of 1 , led to the identification of potent and selective inhibitors of the deubiquitinating enzyme USP8.  相似文献   

18.
19.
The elastic modulus (El) of crystalline regions in the direction parallel to the chain axis in a new semiaromatic polyamide 9‐T (PA9‐T) containing a long aliphatic chain unit was measured by X‐ray diffraction and the derived El value was discussed in terms of its molecular conformation and mechanical properties. For low and high molecular weight PA9‐Ts, the El value of 40 GPa was obtained. The low El value for PA9‐T is due to the presence of aromatic groups with long crankshaft arms, which result in a greater moment of force during deformation compared with those polymers with planner zigzag molecular conformation like polyethylene and nylon 6 α‐form. Another factor for the low El is due to the contraction of its molecular chains that is likely originated from the existence of a torsional conformation. The presence of contraction causes some internal rotation in the polymer chain during extensional deformation, which results in low El. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   

20.
Aliphatic [n]‐polyurethanes have recently been synthesized from ω‐isocyanato‐α‐alkanols or, more traditionally, by cationic ring‐opening polymerization of cyclourethanes or by the Bu2Sn(OMe)2‐promoted polycondensation of ω‐hydroxy‐α‐O‐phenylurethane alkanes. For the latter procedures, the conditions employed do not seem to be suitable for highly functionalized monomers. In contrast, the polymerization of ω‐amino‐α‐phenylcarbonate alkanes is expected to occur under milder conditions. ω‐Amino‐α‐phenylcarbonate alkanes have been synthesized from 6‐aminohexanol (1) and 3‐aminopropanol (6). The procedure involves the N‐Boc protection of the amino group, followed by activation of the alcohol. Removal of the N‐Boc affords the corresponding ω‐amino‐1‐O‐phenyloxycarbonyloxyalkane hydrochlorides. Other oligomeric comonomers between 1 and 6 have been prepared. The polymerization of these precursors takes place in the absence of metal catalysts to afford the corresponding linear and regioregular [n]‐polyurethanes. The procedure described is useful for the preparation of stable ω‐amino‐α‐phenylcarbonate alkane derivatives, which possess varied chain lengths between the terminal functions. These monomers yield [n]‐polyurethanes having various structures starting from just two aminoalkanols. The polyurethanes were obtained in high yields, with reasonable molecular weight and polydispersity values, and they were characterized spectroscopically and thermally. These studies reveal constitutionally uniform structures that are free of carbonate or urea linkages. Copyright © 2010 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号