首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Contrast to conventional dependent double‐edge (DDE) pulse‐width modulation (PWM), independent double‐edge (IDE) PWM is investigated and applied to the control of switching dc‐dc converters, with improved digital‐peak‐voltage (IDPV) controlled buck converter in this paper. IDE modulation unifies all the PWM schemes reported up to now and is thus called as unified PWM. It is revealed that conventional trailing‐edge, leading‐edge, trailing‐triangle, and leading‐triangle modulations are special cases of IDE modulation. The control laws of IDPV controlled buck converter with IDE modulation are investigated and compared with those of IDPV with DDE modulation. Their stabilities and robustness are analyzed subsequently. Digital implementation of the unified PWM is also carried out. Steady‐state and transient performances of IDPV controlled buck converters with IDE modulation and DDE modulation are compared and verified by experimental results. It is concluded that steady‐state and transient performances of IDPV with IDE are better than those of IDPV with DDE modulation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
This paper describes design and implementation of a digitally controlled single‐inductor dual‐output (SIDO) buck converter operating in discontinuous conduction mode. This converter adopts time‐multiplexing control in providing two independent output voltages using only an inductor. The design issues of the digital controller are discussed, including static and dynamic characteristics. Implementation of the controller, a modified hybrid digital pulse width modulator and a single look‐up table are developed. The digital controller was implemented on a field‐programmable gate array‐based control board. Experimental results demonstrating system validity are presented for a SIDO buck converter with nominal 3.6 V input voltage, and the outputs are regulated at 1.8 and 2.2 V. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
This letter presents a method for improving the transient response of DC‐DC converters. The proposed technique replaces the conventional error amplifier with a combination of two different amplifiers to achieve a high loop gain and high slew rate. In addition, a rapid output‐voltage control circuit is employed to further reduce the recovery time. The proposed technique was applied to a four‐phase buck converter, and the chip was implemented using a 0.18‐μm CMOS process. The switching frequency of each phase was set at 2 MHz. Using a supply voltage of 2.7–5.5 V and an output voltage of 0.6–1.5 V, the regulator provided up to 2‐A load current with maximum measured recovery time of only 6.2 and 6.5 μs for increasing and decreasing load current, respectively. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, a new hybrid dc–dc converter with low circulating current within the freewheeling interval, wide range of zero‐voltage switching and reduced output current ripple is presented. The proposed hybrid circuit includes two three‐level pulse‐width modulation converters and a series resonant converter with the shard lagging‐leg switches. Series resonant converter is operated at fixed switching frequency (close to series resonant frequency) to extend the zero‐voltage switching range of lagging‐leg switches. The output of series resonant converter is connected to the secondary sides of three‐level converters to produce a positive rectified voltage instead of zero voltage. Hence, the output inductances can be reduced. The reflected positive voltage is used to decrease the circulating current to zero during the freewheeling interval. Therefore, the circulating current losses in three‐level converters are improved. Finally, experiments are presented for a 1.44 kW prototype circuit converting 800 V input to an output voltage 24 V/60A. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
An interleaved pulse‐width modulation (PWM) converter with less power switches is presented in this paper. The buck type of active clamp circuit is used to recycle the energy stored in the leakage inductor of a transformer. The zero voltage switching (ZVS) turn‐on of power switches is realized by the resonance during the transition interval of power switches. At the secondary side of transformers, two full‐wave rectifiers with dual‐output configuration are connected in parallel to reduce the current stresses of the secondary windings of transformers. In the proposed converter, power switches can accomplish two functions of the interleaved PWM modulation and active clamp feature at the same time. Therefore, the circuit components in the proposed converter are less than that of the conventional interleaved ZVS forward converter. The operation principle and system analysis of the proposed converter are provided in detail. Experimental results for a 280 W prototype operated at 100 kHz are provided to demonstrate the effectiveness of the proposed converter. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
This paper describes a new single‐phase buck‐boost power‐factor‐correction (PFC) converter with output‐voltage, ripple reducing operation. The converter consists of a conventional buck‐boost PFC converter and an additional switch to obtain a freewheeling mode of the dc inductor current, and is operated by two modulators. The first modulator controls the buck‐boost switch to obtain PFC. The other modulator controls the square value of the instantaneous dc inductor current to perform the output‐voltage‐ripple‐reducing operation. In the two modulations, the time integral value of the input and output currents in each modulation period are controlled directly and indirectly, respectively. Thus, modulation errors or undesirable distortions of the input current and output voltage ripple are eliminated even if the dc inductor current produces large ripple in a low‐frequency range. The theories and combination techniques for the two modulators, implementation, and experimental results are described. © 1998 Scripta Technica, Electr Eng Jpn, 126(2): 56–70, 1999  相似文献   

7.
This paper discusses the performance of compensation methods for dead‐time voltage error in voltage‐source grid‐connection pulse‐width modulation converters. The theoretical analysis in this paper reveals the relationship between the voltage error and the current ripples through the converter. The analytical results imply that the voltage error is strongly affected by the amplitude of the current ripples as well as the source power factor. This paper proposes a new compensation method which makes it possible to use two lookup tables to reduce the calculation time in the controller. The compensation characteristics are compared by using a 200‐V 5‐kW three‐phase grid‐connection converter. As a result, conventional approximation‐based compensation methods exhibit an acceptable performance in a restricted power‐factor operation range. In contrast, the turn‐off transition‐based compensation method and the proposed method have a good compensation performance all over the power factor.  相似文献   

8.
This paper presents a new single‐stage single‐switch high power factor correction AC/DC converter suitable for low‐power applications (< 150 W) with a universal input voltage range (90–265 Vrms). The proposed topology integrates a buck–boost input current shaper followed by a buck and a buck–boost converter, respectively. As a result, the proposed converter can operate with larger duty cycles compared with the existing single‐stage single‐switch topologies, hence, making them suitable for extreme step‐down voltage conversion applications. Several desirable features are gained when the three integrated converter cells operate in discontinuous conduction mode. These features include low semiconductor voltage stress, zero‐current switch at turn‐on, and simple control with a fast well‐regulated output voltage. A detailed circuit analysis is performed to derive the design equations. The theoretical analysis and effectiveness of the proposed approach are confirmed by experimental results obtained from a 100‐W/24‐Vdc laboratory prototype. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
In recent years, a wide variety of high‐power‐factor converter schemes have been proposed to solve the harmonic problem. The schemes are based on conventional boost, buck, or buck–boost topology, and their performance, such as output voltage control range in the boost and buck topology or efficiency in the buck–boost topology, is limited. To solve this, the authors propose a single‐phase high‐power‐factor converter with a new topology obtained from a combination of buck and buck–boost topology. The power stage performs the buck and buck–boost operations by a compact single‐stage converter circuit while the simple controller/modulator appropriately controls the alternation of the buck and buck–boost operation and maintains a high‐quality input current during both the buck and buck–boost operations. The proposed scheme results in a high‐performance rectifier with no limitation of output voltage control range and a high efficiency. In this paper, the principle and operation of the proposed converter scheme are described in detail and the theory is confirmed through experimental results obtained from 2‐kW prototype converter. © 2000 Scripta Technica, Electr Eng Jpn, 131(3): 91–100, 2000  相似文献   

10.
The response of a digital Zero Average Dynamics (ZAD)‐controlled buck converter under the variation of its intrinsic parameters as well as the pulse‐width modulation signal is studied in detail. The multiparameter analysis presented here leads to a complete knowledge of the different dynamical scenarios exhibited by the system. Numerical results indicate that the success of the ZAD‐strategy is highly dependent on the parameter and pulse‐width modulation (PWM) combinations. Experiments are included to validate the performance inside the so‐called optimum region. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
This paper presents a high step‐up soft switched dc–dc converter having the feature of current ripple cancelation in the input stage that is specialized for power conditioning of fuel cell systems. The converter comprises a special half‐bridge converter and a rectifier stage based upon the voltage‐doubler circuit, in which the coupled‐inductor technology is amalgamated with switched‐capacitor circuit. The input current with no ripple is the principal characteristics of this topology that is achieved by utilizing a small coupled inductor. In addition, the low clamped voltage stress across both power switches and output diodes is another advantage of the proposed converter, which allows employing the metal–oxide–semiconductor field‐effect transistors with minuscule on‐state resistance and diodes with lower forward voltage‐drop, and thereby, the semiconductors' conduction losses diminish considerably. The inherent nature of this topology handles the switching scheme based on the asymmetrical pulse width modulation in order for switches to establish the zero voltage switching, leading to lower switching losses. Besides, because of the absence of the reverse‐recovery phenomenon, all diodes turn off with zero current switching. At last, a 250‐W laboratory prototype with the input voltage 24 V and output voltage 380 V is implemented to verify the especial features of the proposed converter. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, we report a novel single‐switch AC to DC step‐down converter suitable for light emitting diodes. The proposed topology has a buck and a buck–boost converter. The circuit is designed to operate in the discontinuous conduction mode in order to improve the power factor. In this topology, a part of the input power is connected to the load directly. This feature of the proposed topology increases the efficiency of power conversion, improves the input power factor, produces less voltage stress on intermediate stages, and reduces the output voltage in the absence of a step‐down transformer. The theoretical analysis, design procedure, and performance of the proposed converter are verified by simulation and experiment. A 36 V, 60 W prototype has been built to demonstrate the merits of this circuit. © 2017 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

13.
An interleaved DC‐DC converter with soft switching technique is presented. There are two converter modules in the adopted circuit to share the load power. Since the interleaved pulse‐width modulation (PWM) is adopted to control two circuit modules, the ripple currents at input and output sides are naturally reduced. Therefore the input and output capacitances can be reduced. In each circuit module, a conventional boost converter and a voltage doubler configuration with a coupled inductor are connected in series at the output side to achieve high step‐up voltage conversion ratio. Active snubber connected in parallel with boost inductor is adopted to limit voltage stress on active switch and to release the energy stored in the leakage and magnetizing inductances. Since asymmetrical PWM is used to control active switches, the leakage inductance and output capacitance of active switches are resonant in the transition interval. Thus, both active switches can be turned on at zero voltage switching. The resonant inductance and output capacitances at the secondary side of transformer are resonant to achieve zero current switching turn‐off for rectifier diodes. Therefore, the reverse recovery losses of fast recovery diodes are reduced. Finally, experiments based on a laboratory prototype rated at 400 W are presented to verify the effectiveness of the proposed converter. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, an adaptive nonlinear controller is designed for voltage control of the DC–DC buck converter in both continuous and discontinuous conduction modes. The proposed controller is developed based on input–output linearization, which is robust and stable against converter load changes, input voltage variations, and parameter uncertainties. In the proposed approach, all the converter parameters, namely input voltage, load resistance, and other parasitic elements of the power circuit, are assumed to be uncertain and estimated using a suitable Lyapunov function. Using a stand‐alone TMS320F2810 digital signal processor from Texas Instruments, some simulations and experimental results are obtained to verify the proposed control approach. The results are in good agreement and prove the effectiveness and capability of the controller over a wide range of operations. Also, advantages of the designed nonlinear regulator are indicated in comparison with a pulse width modulation (PWM)‐based sliding mode controller. © 2014 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

15.
An indirect control variable for improving the control‐to‐output characteristics of a Pulse Width Modulation (PWM) buck‐boost converter is introduced in this letter. The voltage gain and the small‐signal model of the buck‐boost converter are reviewed. The actual voltage command at one input of the PWM comparator is from the proposed indirect control variable and the peak value of the high‐frequency PWM carrier. The resulted voltage gain function appears proportional to this indirect control command. Also the dependence of the DC gain of the control‐to‐output transfer function on the duty cycle is eliminated. Experimental results conform well to the theoretical analysis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
A soft switching two‐switch forward converter is presented to achieve zero voltage switching (ZVS) turn‐on of switching devices. In the adopted converter, a buck‐boost type of active clamp is connected in parallel with the primary winding of transformer. The energy stored in the transformer leakage inductance and magnetizing inductance can be recovered so that the peak voltage stress of switching devices is limited. The resonance between the transient interval of two main and auxiliary switches is used to achieve ZVS turn‐on of all switches. The current doubler synchronous rectifier is used in the secondary side of transformer for reducing the root mean square value of output inductor current, transformer secondary winding current and output voltage ripple by cancelling the current ripple of two output inductors. First, the circuit configuration and the principles of operation are analyzed in detail. The steady‐state analysis and design consideration are also presented. Finally, experimental results with a laboratory prototype based on a 380 V input and 12 V/30 A output were provided to verify the effectiveness of the proposed converter. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Modern energy transmission and signal reproduction techniques rely upon power amplifiers that must operate with high efficiency. An increasingly popular technique for addressing this problem involves replacing the fixed power amplifier supply voltage V D D with a controlled, variable voltage provided by a dynamic power supply. Although pulse‐width modulated dc‐dc buck converters typically function as fixed‐output supplies, this paper provides new theoretical dc analysis for operation wherein the output voltage is controlled and continuously variable over a wide range. A design procedure for the variable‐output buck converter is derived. Key device parameters affecting converter speed and efficiency are identified. The dc analysis and design procedure are verified experimentally, with calculated and measured parameters shown to be in good agreement. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, a new soft switching direct current (DC)–DC converter with low circulating current, wide zero voltage switching range, and reduced output inductor is presented for electric vehicle or plug‐in hybrid electric vehicle battery charger application. The proposed high‐frequency link DC–DC converter includes two resonant circuits and one full‐bridge phase‐shift pulse‐width modulation circuit with shared power switches in leading and lagging legs. Series resonant converters are operated at fixed switching frequency to extend the zero voltage switching range of power switches. Passive snubber circuit using one clamp capacitor and two rectifier diodes at the secondary side is adopted to reduce the primary current of full‐bridge converter to zero during the freewheeling interval. Hence, the circulating current on the primary side is eliminated in the proposed converter. In the same time, the voltage across the output inductor is also decreased so that the output inductance can be reduced compared with the output inductance in conventional full‐bridge converter. Finally, experiments are presented for a 1.33‐kW prototype circuit converting 380 V input to an output voltage of 300–420 V/3.5 A for battery charger applications. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, a buck‐boost converter circuit for wireless power transfer via inductive links in bio‐implantable systems is presented. The idea is based on reusing the power receiver coil to design a regulator. This method employs five switches to utilize the coil inductor in a frequency other than the power‐receiving signal frequency. Reusing the coil inductor decreases the on‐chip regulator area and makes it suitable for bio‐implants. Furthermore, in the proposed technique, the regulator efficiency becomes almost independent of the coil receiving voltage amplitude. The proposed concept is employed in a buck‐boost regulator, and simulation results are provided. For a 10 MHz received signal with the amplitude variation within 3 ~ 6 V and with the converter switching rate of 200 kHz, the achieved maximum efficiency is 78%. The proposed regulator can also deliver 10 μA to 4 mA to its load while its output voltage varies from 0.6 to 2.3 V. Simulations of the proposed converter are performed in Cadence‐Spectre using TSMC 0.18 μm CMOS technology. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
提出了一种电感电流断续工作模式(DCM)单电感双输出(SIDO)Buck变换器的电流型脉冲序列(PT)控制方法。为避免两路输出的交叉影响,应用时分复用理论,由时分复用信号决定两路输出中相应输出支路的调节,从而实现每一个输出支路的独立调节,避免了两个输出支路的交叉影响;通过在脉冲序列中加入空白脉冲,改善了变换器轻载时的瞬态响应及开关损耗;在控制回路中引入了电流环,实现主功率回路的逐周期限流。有别于传统电流型脉冲宽度调制(PWM)控制技术,电流型PT控制不需要误差放大器及相应的补偿网络,因此具有实现简单和瞬态响应快的优点。仿真与实验验证本文研究结果的正确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号