首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1‐Deoxy‐D ‐xylulose 5‐phosphate (DXP) synthase is the first enzyme in the methylerythritol phosphate pathway to essential isoprenoids in pathogenic bacteria and apicomplexan parasites. In bacterial pathogens, DXP lies at a metabolic branch point, serving also as a precursor in the biosynthesis of vitamins B1 and B6, which are critical for central metabolism. In an effort to identify new bisubstrate analogue inhibitors that exploit the large active site and distinct mechanism of DXP synthase, a library of aryl mixed oximes was prepared and evaluated. Trihydroxybenzaldoximes emerged as reversible, low‐micromolar inhibitors, competitive against D ‐glyceraldehyde 3‐phosphate (D ‐GAP) and either uncompetitive or noncompetitive against pyruvate. Hydroxybenzaldoximes are the first class of D ‐GAP‐competitive DXP synthase inhibitors, offering new tools for mechanistic studies of DXP synthase and a new direction for the development of antimicrobial agents targeting isoprenoid biosynthesis.  相似文献   

2.
Progression through the cell division cycle is controlled by a family of cyclin‐dependent kinases (CDKs), the activity of which depends on their binding to regulatory partners (cyclins A–H). Deregulation of the activity of CDKs has been associated with the development of infectious, neurodegenerative, and proliferative diseases such as Alzheimer's, Parkinson's, or cancer. Most cancer cells contain mutations in the pathways that control the activity of CDKs. This observation led this kinase family to become a central target for the development of new drugs for cancer therapy. A range of structurally diverse molecules has been shown to inhibit the activity of CDKs through their activity as ATP antagonists. Nevertheless, the ATP binding sites on CDKs are highly conserved, limiting the kinase specificity of these inhibitors. Various genetic and crystallographic approaches have provided essential information about the mechanism of formation and activation of CDK–cyclin complexes, providing new ways to implement novel research strategies toward the discovery of new, more effective and selective drugs. Herein we review the progress made in the development of ATP‐noncompetitive CDK–cyclin inhibitors.  相似文献   

3.
Polo‐like kinase 1 (Plk1) is an evolutionarily conserved serine/threonine kinase, and its N‐terminal kinase domain (KD) controls cell signaling through phosphorylation. Inhibitors of Plk1 are potential anticancer drugs. Most known Plk1 KD inhibitors are ATP‐competitive compounds, which may suffer from low selectivity. In this study we discovered novel non‐ATP‐competitive Plk1 KD inhibitors by virtual screening and experimental studies. Potential binding sites in Plk1 KD were identified by using the protein binding site detection program Cavity. The identified site was subjected to molecular‐docking‐based virtual screening. The activities of top‐ranking compounds were evaluated by in vitro enzyme assay with full‐length Plk1 and direct binding assay with Plk1 KD. Several compounds showed inhibitory activity, and the most potent was found to be 3‐((2‐oxo‐2‐(thiophen‐2‐yl)ethyl)thio)‐6‐(pyridin‐3‐ylmethyl)‐1,2,4‐triazin‐5(4H)‐one (compound 4 ) with an IC50 value of 13.1±1.7 μm . Our work provides new insight into the design of kinase inhibitors that target non‐ATP binding sites.  相似文献   

4.
Kinases present an attractive target for drug development, since they are involved in vital cellular processes and are implicated in a variety of diseases, such as cancer and diabetes. However, obtaining selectivity for a specific kinase over others is difficult since many current kinase inhibitors exclusively target the highly conserved kinase ATP binding domain. Previously, a microarray‐based strategy to discover so‐called bisubstrate‐based inhibitors that target the more specific peptide binding groove in addition to the ATP binding site was described. One attractive feature of this strategy is the opportunity to tune the selectivity of these inhibitors by systematically varying components. In an extension to this previous work, this study explores the potential of this guided selectivity modulation, leading to a series of inhibitors with different selectivity profiles against highly homologous protein kinase C (PKC) isozymes. Of the inhibitors studied, most exhibited improved potency and selectivity compared with their constituent parts. Furthermore, the selectivity was found to be tunable either through modification of the pseudosubstrate peptide (peptide binding groove) or the ATP‐competitive part (ATP binding site). In a number of cases, the selectivity of the construct could be predicted from the initial peptide substrate profiling experiment. Since this strategy is applicable to all kinase sets, it could be used to rapidly develop uniquely selective inhibitors.  相似文献   

5.
Indoleamine‐2,3 dioxygenase 1 (IDO1) has emerged as a central regulator of immune responses in both normal and disease biology. Due to its established role in promoting tumour immune escape, IDO1 has become an attractive target for cancer treatment. A novel series of highly cell potent IDO1 inhibitors based on a 4‐amino‐1,2,3‐triazole core have been identified. Comprehensive kinetic, biochemical and structural studies demonstrate that compounds from this series have a noncompetitive kinetic mechanism of action with respect to the tryptophan substrate. In co‐complex crystal structures, the compounds bind in the tryptophan pocket and make a direct ligand interaction with the haem iron of the porphyrin cofactor. It is proposed that these data can be rationalised by an ordered‐binding mechanism, in which the inhibitor binds an apo form of the enzyme that is not competent to bind tryptophan. These inhibitors also form a very tight, long‐lived complex with the enzyme, which partially explains their exquisite cellular potency. This novel series represents an attractive starting point for the future development of potent IDO1‐targeted drugs.  相似文献   

6.
Upregulation of the HGF and MSP growth‐factor processing serine endopeptidases HGFA, matriptase and hepsin is correlated with increased metastasis in multiple tumor types driven by c‐MET or RON kinase signaling. We rationally designed P1’ α‐ketobenzothiazole mechanism‐based inhibitors of these proteases. Structure–activity studies are presented, which resulted in the identification of potent inhibitors with differential selectivity. The tetrapeptide inhibitors span the P1–P1’ substrate cleavage site via a P1’ amide linker off the benzothiazole, occupying the S3’ pocket. Optimized inhibitors display sub‐nanomolar enzyme inhibition against one, two, or all three of HGFA, matriptase, and hepsin. Several compounds also have good selectivity against the related trypsin‐like proteases, thrombin and Factor Xa. Finally, we show that inhibitors block the fibroblast (HGF)‐mediated migration of invasive DU145 prostate cancer cells. In addition to prostate cancer, breast, colon, lung, pancreas, gliomas, and multiple myeloma tumors all depend on HGF and MSP for tumor survival and progression. Therefore, these unique inhibitors have potential as new therapeutics for a diverse set of tumor types.  相似文献   

7.
Despite the considerable interest in protein kinase C‐related kinase 1 (PRK1) as a target in cancer research, there is still a lack of PRK1 inhibitors with suitable selectivity profiles and physicochemical properties. To identify new PRK1 inhibitors we applied a virtual screening approach, which combines ensemble docking, minimization of the protein–ligand complex, binding free energy calculations, and application of quantitative structure–activity relationship (QSAR) models for predicting in vitro activity. The developed approach was then applied in a prospective manner to screen available libraries of kinase inhibitors from Selleck and GlaxoSmithKline (GSK). Compounds that showed favorable prediction were then tested in vitro for PRK1 inhibition. Some of the hits were found to inhibit PRK1 in the low‐nanomolar range. Three in vitro hits were additionally tested in a mass‐spectrometry‐based cellular kinase profiling assay to examine selectivity. Our findings show that nanomolar and drug‐like inhibitors can be identified by the virtual screening approach presented herein. The identified inhibitors are valuable tools for gaining a better understanding of PRK1 inhibition, and the identified hits can serve as starting points for further chemical optimization.  相似文献   

8.
WEE1 kinase regulates the G2/M cell‐cycle checkpoint, a critical mechanism for DNA repair in cancer cells that can confer resistance to DNA‐damaging agents. We previously reported a series of pyrazolopyrimidinones based on AZD1775, a known WEE1 inhibitor, as an initial investigation into the structural requirements for WEE1 inhibition. Our lead inhibitor demonstrated WEE1 inhibition in the same nanomolar range as AZD1775, and potentiated the effects of cisplatin in medulloblastoma cells, but had reduced single‐agent cytotoxicity. These results prompted the development of a more comprehensive series of WEE1 inhibitors. Herein we report a series of pyrazolopyrimidinones and identify a more potent WEE1 inhibitor than AZD1775 and additional compounds that demonstrate that WEE1 inhibition can be achieved with reduced single‐agent cytotoxicity. These studies support that WEE1 inhibition can be uncoupled from the potent cytotoxic effects observed with AZD1775, and this may have important ramifications in the clinical setting where WEE1 inhibitors are used as chemosensitizers for DNA‐targeted chemotherapy.  相似文献   

9.
As part of our research projects to identify new chemical entities of biological interest, we developed a synthetic approach and the biological evaluation of (7‐aryl‐1,5‐naphthyridin‐4‐yl)ureas as a novel class of Aurora kinase inhibitors for the treatment of malignant diseases based on pathological cell proliferation. 1,5‐Naphthyridine derivatives showed excellent inhibitory activities toward Aurora kinases A and B, and the most active compound, 1‐cyclopropyl‐3‐[7‐(1‐methyl‐1H‐pyrazol‐4‐yl)‐1,5‐naphthyridin‐4‐yl]urea ( 49 ), displayed IC50 values of 13 and 107 nM against Aurora kinases A and B, respectively. In addition, the selectivity toward a panel of seven cancer‐related protein kinases was highlighted. In vitro ADME properties were also determined in order to rationalize the difficulties in correlating antiproliferative activity with Aurora kinase inhibition. Finally, the good safety profile of these compounds imparts promising potential for their further development as anticancer agents.  相似文献   

10.
Apicomplexan parasites encompass several human‐ and animal‐pathogenic protozoans such as Plasmodium falciparum, Toxoplasma gondii, and Eimeria tenella. E. tenella causes coccidiosis, a disease that afflicts chickens, leading to tremendous economic losses to the global poultry industry. The considerable increase in drug resistance makes it necessary to develop new therapeutic strategies against this parasite. Cyclin‐dependent kinases (CDKs) are key molecules in cell‐cycle regulation and are therefore prominent target proteins in parasitic diseases. Bioinformatics analysis revealed four potential CDK‐like proteins, of which one—E. tenella CDK‐related kinase 2 (EtCRK2)—has already been characterized by gene cloning and expression. 1 By using the CDK‐specific inhibitor flavopiridol in EtCRK2 enzyme assays and schizont maturation assays (SMA), we could chemically validate CDK‐like proteins as potential drug targets. An X‐ray crystal structure of human CDK2 (HsCDK2) served as a template to build protein models of EtCRK2 by comparative homology modeling. Structural differences in the ATP binding site between EtCRK2 and HsCDK2, as well as chicken CDK3, were addressed for the optimization of selective ATP‐competitive inhibitors. Virtual screening and “wet‐bench” high‐throughput screening campaigns on large compound libraries resulted in an initial set of hit compounds. These compounds were further analyzed and characterized, leading to a set of four promising lead compounds for development as EtCRK2 inhibitors.  相似文献   

11.
Polo‐like kinase 1 (PLK1) plays crucial functions in multiple stages of mitosis and is considered to be a potential drug target for cancer therapy. The functions of PLK1 are mediated by its N‐terminal kinase domain and C‐terminal polo‐box domain (PBD). Most inhibitors targeting the kinase domain of PLK1 have a selectivity issue because of a high degree of structural conservation within kinase domains of all protein kinases. Here, we combined virtual and experimental screenings to identify green tea catechins as potent inhibitors of the PLK1 PBD. Initially, (?)‐epigallocatechin, one of the main components of green tea polyphenols, was found to significantly block the binding of fluorescein‐labeled phosphopeptide to the PBD at a concentration of 10 μm. Next, additional catechins were evaluated for their dose‐dependent inhibition of the PBD and preliminary structure–activity relationships were derived. Cellular analysis further showed that catechins interfere with the proper subcellular localization of PLK1, lead to cell‐cycle arrest in the S and G2M phases, and induce growth inhibition of several human cancer cell types, such as breast adenocarcinoma (MCF7), lung adenocarcinoma (A549), and cervical adenocarcinoma (HeLa). Our data provides new insight into understanding the anticancer activities of green tea catechins.  相似文献   

12.
De‐N‐acetylases of β‐(1→6)‐D ‐N‐acetylglucosamine polymers (PNAG) and β‐(1→4)‐D ‐N‐acetylglucosamine residues in peptidoglycan are attractive targets for antimicrobial agents. PNAG de‐N‐acetylases are necessary for biofilm formation in numerous pathogenic bacteria. Peptidoglycan de‐N‐acetylation facilitates bacterial evasion of innate immune defenses. To target these enzymes, transition‐state analogue inhibitors containing a methylphosphonamidate have been synthesized through a direct Staudinger–phosphonite reaction. The inhibitors were tested on purified PgaB, a PNAG de‐N‐acetylase from Escherichia coli, and PgdA, a peptidoglycan de‐N‐acetylase from Streptococcus pneumonia. Herein, we describe the most potent inhibitor of peptidoglycan de‐N‐acetylases reported to date (Ki=80 μM ). The minimal inhibition of PgaB observed provides insight into key structural and functional differences in these enzymes that will need to be considered during the development of future inhibitors.  相似文献   

13.
hMTH1 (8‐oxo‐2′‐deoxyguanine triphosphatase) hydrolyzes oxidized nucleoside triphosphates; its presence is non‐essential for survival of normal cells but is required for survival of cancer cells. In this study, 8‐halogenated‐7‐deaza‐2′‐deoxyguanosine triphosphate (8‐halogenated‐7‐deazadGTP) derivatives were synthesized. Interestingly, these triphosphates were poor substrates for hMTH1, but exhibited strong competitive inhibition against hMTH1 at nanomolar levels. This inhibitory effect is attributed to slower rate of hydrolysis, possibly arising from enzyme structural changes, specifically different stacking interactions with 8‐halogenated‐7‐deazadGTP. This is the first example of using nucleotide derivatives to inhibit hMTH1, thus demonstrating their potential as antitumor agents.  相似文献   

14.
Cholesterol esterase (CEase), a serine hydrolase thought to be involved in atherogenesis and thus coronary heart disease, is considered as a target for inhibitor development. We investigated recombinant human and murine CEases with a new fluorometric assay in a structure–activity relationship study of a small library of ω‐phthalimidoalkyl aryl ureas. The urea motif with an attached 3,5‐bis(trifluoromethyl)phenyl group and the aromatic character of the ω‐phthalimide residue were most important for inhibitory activity. In addition, an alkyl chain composed of three or four methylene groups, connecting the urea and phthalimide moieties, was found to be an optimal spacer for inhibitors. The so‐optimized compounds 2 [1‐(3,5‐bis(trifluoromethyl)phenyl)‐3‐(3‐(1,3‐dioxoisoindolin‐2‐yl)propyl)urea] and 21 [1‐(3,5‐bis(trifluoromethyl)phenyl)‐3‐(4‐(1,3‐dioxoisoindolin‐2‐yl)butyl)urea] exhibited dissociation constants (Ki) of 1–19 μm on the two CEases and showed either a competitive ( 2 on the human enzyme and 21 on the murine enzyme) or a noncompetitive mode of inhibition. Two related serine hydrolases—monoacylglycerol lipase and fatty acid amide hydrolase—were inhibited by ω‐phthalimidoalkyl aryl ureas to a lesser extent.  相似文献   

15.
The prostate‐specific membrane antigen (PSMA) is an established target for the delivery of cancer therapeutic and imaging agents due to its high expression on the surface of prostate cancer cells and within the neovasculature of other solid tumors. Here, we describe the synthesis and screening of antibody‐conjugated silica‐coated iron oxide nanoparticles for PSMA‐specific cell targeting. The humanized anti‐PSMA antibody, HuJ591, was conjugated to a series of nanoparticles with varying densities of polyethylene glycol and primary amine groups. Customized assays utilizing iron spectral absorbance and enzyme‐linked immunoassay (ELISA) were developed to screen microgram quantities of nanoparticle formulations for immunoreactivity and cell targeting ability. Antibody and PSMA‐specific targeting of the optimized nanoparticle was evaluated using an isogenic PSMA‐positive and PSMA‐negative cell line pair. Specific nanoparticle targeting was confirmed by iron quantification with inductively coupled plasma mass spectrometry (ICP‐MS). These methods and nanoparticles support the promise of targeted theranostic agents for future treatment of prostate and other cancers.  相似文献   

16.
A series of hybrid analogues was designed by combination of the iminoxylitol scaffold of parent 1C9‐DIX with triazolylalkyl side chains. The resulting compounds were considered potential pharmacological chaperones in Gaucher disease. The DIX analogues reported here were synthesized by CuAAC click chemistry from scaffold 1 (α‐1‐C‐propargyl‐1,5‐dideoxy‐1,5‐imino‐D ‐xylitol) and screened as imiglucerase inhibitors. A set of selected compounds were tested as β‐glucocerebrosidase (GBA1) enhancers in fibroblasts from Gaucher patients bearing different genotypes. A number of these DIX compounds were revealed as potent GBA1 enhancers in genotypes containing the G202R mutation, particularly compound DIX‐28 (α‐1‐C‐[(1‐(3‐trimethylsilyl)propyl)‐1H‐1,2,3‐triazol‐4‐yl)methyl]‐1,5‐dideoxy‐1,5‐imino‐D ‐xylitol), bearing the 3‐trimethylsilylpropyl group as a new surrogate of a long alkyl chain, with approximately threefold activity enhancement at 10 nM . Despite their structural similarities with isofagomine and with our previously reported aminocyclitols, the present DIX compounds behaved as non‐competitive inhibitors, with the exception of the mixed‐type inhibitor DIX‐28.  相似文献   

17.
New peptidomimetic furin inhibitors with unnatural amino acid residues in the P3 position were synthesized. The most potent compound 4‐guanidinomethyl‐phenylacteyl‐Arg‐Tle‐Arg‐4‐amidinobenzylamide (MI‐1148) inhibits furin with a Ki value of 5.5 pM . The derivatives also strongly inhibit PC1/3, whereas PC2 is less affected. Selected inhibitors were tested in cell culture for antibacterial and antiviral activity against infectious agents known to be dependent on furin activity. A significant protective effect against anthrax and diphtheria toxin was observed in the presence of the furin inhibitors. Furthermore, the spread of the highly pathogenic H5N1 and H7N1 avian influenza viruses and propagation of canine distemper virus was strongly inhibited. Inhibitor MI‐1148 was crystallized in complex with human furin. Its N‐terminal guanidinomethyl group in the para position of the P5 phenyl ring occupies the same position as that found previously for a structurally related inhibitor containing this substitution in the meta position, thereby maintaining all of the important P5 interactions. Our results confirm that the inhibition of furin is a promising strategy for a short‐term treatment of acute infectious diseases.  相似文献   

18.
The enzyme α‐methylacyl CoA racemase (AMACR) is involved in the metabolism of branched‐chain fatty acids and has been identified as a promising therapeutic target for prostate cancer. By using the recently available human AMACR from HEK293 kidney cell cultures, we tested a series of new rationally designed inhibitors to determine the structural requirements in the acyl component. An N‐methylthiocarbamate (Ki=98 nM ), designed to mimic the proposed enzyme‐bound enolate, was found to be the most potent AMACR inhibitor reported to date.  相似文献   

19.
20.
Recent reports document that α‐tetralone (3,4‐dihydro‐2H‐naphthalen‐1‐one) is an appropriate scaffold for the design of high‐potency monoamine oxidase (MAO) inhibitors. Based on the structural similarity between α‐tetralone and 1‐indanone, the present study involved synthesis of 34 1‐indanone and related indane derivatives as potential inhibitors of recombinant human MAO‐A and MAO‐B. The results show that C6‐substituted indanones are particularly potent and selective MAO‐B inhibitors, with IC50 values ranging from 0.001 to 0.030 μM . C5‐Substituted indanone and indane derivatives are comparatively weaker MAO‐B inhibitors. Although the 1‐indanone and indane derivatives are selective inhibitors of the MAO‐B isoform, a number of homologues are also potent MAO‐A inhibitors, with three homologues possessing IC50 values <0.1 μM . Dialysis of enzyme–inhibitor mixtures further established a selected 1‐indanone as a reversible MAO inhibitor with a competitive mode of inhibition. It may be concluded that 1‐indanones are promising leads for the design of therapies for neurodegenerative and neuropsychiatric disorders such as Parkinson’s disease and depression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号