首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 51 毫秒
1.
Prodrug technologies aimed at delivering nucleoside monophosphates into cells (protides) have proved to be effective in improving the therapeutic potential of antiviral and anticancer nucleosides. In these cases, the nucleoside monophosphates are delivered into the cell, where they may then be further converted (phosphorylated) to their active species. Herein, we describe one of these technologies developed in our laboratories, known as the phosphoramidate protide method. In this approach, the charges of the phosphate group are fully masked to provide efficient passive cell‐membrane penetration. Upon entering the cell, the masking groups are enzymatically cleaved to release the phosphorylated biomolecule. The application of this technology to various therapeutic nucleosides has resulted in improved antiviral and anticancer activities, and in some cases it has transformed inactive nucleosides to active ones. Additionally, the phosphoramidate technology has also been applied to numerous antiviral nucleoside phosphonates, and has resulted in at least three phosphoramidate‐based nucleotides progressing to clinical investigations. Furthermore, the phosphoramidate technology has been recently applied to sugars (mainly glucosamine) in order to improve their therapeutic potential. The development of the phosphoramidate technology, mechanism of action and the application of the technology to various monophosphorylated nucleosides and sugars will be reviewed.  相似文献   

2.
2′‐Fluoro‐2′‐deoxyguanosine has been reported to have potent anti‐influenza virus activity in vitro and in vivo. Herein we describe the synthesis and biological evaluation of 6‐modified 2′‐fluoro‐2′‐deoxyguanosine analogues and their corresponding phosphoramidate ProTides as potential anti‐influenza virus agents. Whereas the parent nucleosides were devoid of antiviral activity in two different cellular assays, the 5′‐O‐naphthyl(methoxy‐L ‐alaninyl) ProTide derivatives of 6‐O‐methyl‐2′‐fluoro‐2′‐deoxyguanosine, 6‐O‐ethyl‐2′‐fluoro‐2′‐deoxyguanosine, and 2′‐deoxy‐2′‐fluoro‐6‐chloroguanosine, and the 5′‐O‐naphthyl(ethoxy‐L ‐alaninyl) ProTide of 6‐O‐ethyl‐2′‐fluoro‐2′‐deoxyguanosine displayed antiviral EC99 values of ~12 μM . The antiviral results are supported by metabolism studies. Rapid conversion into the L ‐alaninyl metabolite and then 6‐modified 2′‐fluoro‐2′‐deoxyguanosine 5′‐monophosphate was observed in enzymatic assays with yeast carboxypeptidase Y or crude cell lysate. Evidence for efficient removal of the 6‐substituent on the guanine part was provided by enzymatic studies with adenosine deaminase, and by molecular modeling of the nucleoside 5′‐monophosphates in the catalytic site of a model of ADAL1, thus indicating the utility of the double prodrug concept.  相似文献   

3.
Herein we describe the synthesis of lipophilic triphosphate prodrugs of abacavir, carbovir, and their 1′,2′‐cis‐substituted carbocyclic analogues. The 1′,2′‐cis‐carbocyclic nucleosides were prepared by starting from enantiomerically pure (1R,2S)‐2‐((benzyloxy)methyl)cyclopent‐3‐en‐1‐ol by a microwave‐assisted Mitsunobu‐type reaction with 2‐amino‐6‐chloropurine. All four nucleoside analogues were prepared from their 2‐amino‐6‐chloropurine precursors. The nucleosides were converted into their corresponding nucleoside triphosphate prodrugs (TriPPPro approach) by application of the H‐phosphonate route. The TriPPPro compounds were hydrolyzed in different media, in which the formation of nucleoside triphosphates was proven. While the TriPPPro compounds of abacavir and carbovir showed increased antiviral activity over their parent nucleoside, the TriPPPro compounds of the 1′,2′‐cis‐substituted analogues as well as their parent nucleosides proved to be inactive against HIV.  相似文献   

4.
5.
Computer‐aided approaches coupled with medicinal chemistry were used to explore novel carbocyclic nucleosides as potential anti‐hepatitis C virus (HCV) agents. Conformational analyses were carried out on 6‐amino‐1H‐pyrazolo[3,4‐d]pyrimidine (6‐APP)‐based carbocyclic nucleoside analogues, which were considered as nucleoside mimetics to act as HCV RNA‐dependent RNA polymerase (RdRp) inhibitors. Structural insight gained from the modeling studies revealed the molecular basis behind these nucleoside mimetics. The rationally chosen 6‐APP analogues were prepared and evaluated for anti‐HCV activity. RdRp SiteMap analysis revealed the presence of a hydrophobic cavity near C7 of the nucleosides; introduction of bulkier substituents at this position enhanced their activity. Herein we report the identification of an iodinated compound with an EC50 value of 6.6 μM as a preliminary anti‐HCV lead.  相似文献   

6.
A series of cycloSal‐phosphate prodrugs of a recently described new class of nucleoside cytostatics (6‐hetaryl‐7‐deazapurine ribonucleosides) was prepared. The corresponding 2′,3′‐isopropylidene 6‐chloro‐7‐deazapurine nucleosides were converted into 5‐O′‐cycloSal‐phosphates. These underwent a series of Stille or Suzuki cross‐couplings with diverse (het)arylstannanes or ‐boronic acids to yield the protected 6‐(het)aryl‐7‐deazapurine pronucleotides that were subsequently deprotected to give 12 derivatives of free pronucleotides. The in vitro cytostatic effect of the pronucleotides was compared with parent nucleoside analogues. In most cases, the activity of the pronucleotide was similar to or somewhat lower than that of the corresponding parent nucleosides, with the exception of 7‐fluoro pronucleotides 13 a , 13 b , and 13 d , which had exhibited GIC50 values that were improved by one order of magnitude (to the low nanomolar range). The presence of a cycloSal‐phosphate group also influenced selectivity toward various cell lines. Several pronucleotides were found which strongly inhibit human adenosine kinase but only weakly inhibit the MTB adenosine kinase.  相似文献   

7.
A convenient and efficient application of heterogeneous poly(4‐vinylpyridine), poly(4‐vinylpyridine N‐oxide), and polystyrene/methylrhenium trioxide systems for the selective oxidation of tocopherols and tocopherol derivatives to the corresponding ortho‐ and para‐tocopherylquinones is described. Environment friendly, easily available, and low‐cost hydrogen peroxide (H2O2) was used as the oxygen atom donor. The antiviral activity of the newly synthesized tocopherylquinones and their parent tocopherols against influenza A virus is also reported. On the basis of the biological assay, the activity of tocopherols against influenza virus is higher than that showed by the corresponding tocopherylquinones, thus suggesting, for the first time, a drawback effect of the oxidative metabolism on the antiviral activity of these compounds.  相似文献   

8.
The syntheses of new conformationally locked North‐ and South‐bicyclo[3.1.0]hexene nucleosides is reported. The North analogues were synthesized by a convergent approach from the known (1S,2R,5R)‐5‐[(tert‐butyldiphenylsilyloxy)methyl]bicyclo[3.1.0]hex‐3‐en‐2‐ol by Mitsunobu coupling with the nucleobases. The South analogues were synthesized from their bicyclo[3.1.0]hexane nucleoside precursors by the selective protection of the primary hydroxy group, conversion of the secondary alcohol into a good leaving group, and base‐catalyzed elimination to generate the olefin. The transformation of a bicyclo[3.1.0]hexane nucleoside into a bicyclo[3.1.0]hexene nucleoside flattens the five‐membered ring of the bicyclic system and rescues anti‐HIV activity for North‐D4T, North‐D4A, and South‐D4C. The relationship between planarity and the anti/syn disposition of the nucleobase that is favored by a particular pseudosugar platform are proposed as key parameters in controlling biological activity.  相似文献   

9.
A series of novel N‐substituted sophocarpinic acid derivatives was designed, synthesized, and evaluated for their anti‐enteroviral activities against coxsackievirus type B3 (CVB3) and coxsackievirus type B6 (CVB6) in Vero cells. Structure–activity relationship analysis revealed that the introduction of a benzenesulfonyl moiety on the 12‐nitrogen atom in (E)‐β,γ‐sophocarpinic acid might significantly enhance anti‐CVB3 activity. Among the derivatives, (E)‐12‐N‐(m‐cyanobenzenesulfonyl)‐β,γ‐sophocarpinic acid ( 11 m ), possessing a meta‐cyanobenzenesulfonyl group, exhibited potent activity against CVB3 with a selectivity index (SI) of 107. Furthermore, compound 11 m also showed a good oral pharmacokinetic profile, with an AUC value of 7.29 μM h?1 in rats, and good safety through the oral route in mice, with an LD50 value of >1000 mg kg?1; these values suggest a druggable characteristic. Therefore, compound 11 m was selected for further investigation as a promising CVB3 inhibitor. We consider (E)‐β,γ‐N‐(benzenesulfonyl)sophocarpinic acids to be a novel class of anti‐CVB3 agents.  相似文献   

10.
Dengue is a systemic viral infection that is transmitted to humans by Aedes mosquitoes. No vaccines or specific therapeutics are currently available for dengue. Lycorine, which is a natural plant alkaloid, has been shown to possess antiviral activities against flaviviruses. In this study, a series of novel lycorine derivatives were synthesized and assayed for their inhibition of dengue virus (DENV) in cell cultures. Among the lycorine analogues, 1‐acetyllycorine exhibited the most potent anti‐DENV activity (EC50=0.4 μM ) with a reduced cytotoxicity (CC50>300 μM ), which resulted in a selectivity index (CC50/EC50) of more than 750. The ketones 1‐acetyl‐2‐oxolycorine (EC50=1.8 μM ) and 2‐oxolycorine (EC50=0.5 μM ) also exhibited excellent antiviral activities with low cytotoxicity. Structure–activity relationships for the lycorine derivatives against DENV are discussed. A three‐dimensional quantitative structure–activity relationship model was established by using a comparative molecular‐field analysis protocol in order to rationalize the experimental results. Further modifications of the hydroxy group at the C1 position with retention of a ketone at the C2 position could potentially lead to inhibitors with improved overall properties.  相似文献   

11.
Herein we describe a class of unconventional nucleosides (methyloxynucleosides) that combine unconventional nucleobases such as substituted aminopyrimidines, aminopurines, or aminotriazines with unusual sugars in their structures. The allitollyl or altritollyl derivatives were pursued as ribonucleoside mimics, whereas the tetrahydrofuran analogues were pursued as their dideoxynucleoside analogues. The compounds showed poor, if any, activity against a broad range of RNA and DNA viruses, including human immunodeficiency virus (HIV). This inactivity may be due to lack of an efficient metabolic conversion into their corresponding 5′‐triphosphates and poor affinity for their target enzymes (DNA/RNA polymerases). Several compounds showed cytostatic activity against proliferating human CD4+ T‐lymphocyte CEM cells and against several other tumor cell lines, including murine leukemia L1210 and human prostate PC3, kidney CAKI‐1, and cervical carcinoma HeLa cells. A few compounds were inhibitory to Moloney murine sarcoma virus (MSV) in C3H/3T3 cell cultures, with the 2,6‐diaminotri‐O‐benzyl‐D ‐allitolyl‐ and ‐D ‐altritolyl pyrimidine analogues being the most potent among them. This series of unconventional nucleosides may represent a novel family of potential antiproliferative agents.  相似文献   

12.
13.
Bioreversible protection of the β‐phosphate group of nucleoside diphosphates (NDPs) as bis(acyloxybenzyl)phosphate esters is presented. To investigate the structure–activity relationship of these potential NDP prodrugs (DiPPro drugs) a series of DiPPro compounds was synthesized bearing fatty acids of various lengths and d4T as a model nucleoside. For synthesis of the lipophilically modified diphosphate group, preformed phosphoramidites were allowed to react with nucleotides, and the β‐PIII moiety was subsequently oxidized. The chemical and enzymatic stability of these prodrugs was studied in different media such as phosphate buffer (pH 7.3) or CEM cell extracts. In all media, the hydrolysis rate was clearly dependent on the acyl moiety and decreased with increasing alkyl chain length. The compounds showed a markedly lower half‐life in cell extracts than in pH 7.3 phosphate buffer due to the presence of enzyme‐catalyzed cleavage. In all media, the DiPPro compounds released d4T diphosphate (d4TDP) as the main product beside d4TMP. In antiviral assays, the compounds proved to be at least as potent as d4T against HIV‐1 and 2 in wild‐type CEM/0 cells. As a proof of concept, compounds with longer acyl residues showed very good anti‐HIV activities in thymidine‐kinase‐deficient cells (CEM/TK?), indicating their ability to penetrate cell membranes and the delivery of phosphorylated metabolites.  相似文献   

14.
Synthetic nucleosides, designed to mimic naturally occurring nucleosides, are important antiviral and anticancer chemotherapeutic agents. However, nucleosides are not active as such and need to be metabolized, step by step, to their corresponding active nucleoside triphosphates (NTPs). This is mediated by phosphorylating enzymes, mainly host cellular kinases with strong specificity for their substrates; in many cases, this specificity prevents efficient conversion into the NTPs. To circumvent this metabolic handicap, successful nucleo(s/t)ide prodrugs have been developed as a valuable concept in the design of effective drugs. The unique concept of the TriPPPro approach, developed by Chris Meier and colleagues, is a powerful tool for the intracellular delivery of active NTPs, bypassing all the phosphorylation steps required by nucleosides to yield the active NTP metabolites. This concept is illustrated herein with general examples.  相似文献   

15.
16.
17.
Purine nucleoside phosphorylase (PNP) from Aeromonas hydrophila encoded by the deoD gene has been over‐expressed in Escherichia coli, purified, characterized about its substrate specificity and used for the preparative synthesis of some 6‐substituted purine‐9‐ribosides. Substrate specificity towards natural nucleosides showed that this PNP catalyzes the phosphorolysis of both 6‐oxo‐ and 6‐aminopurine (deoxy)ribonucleosides. A library of nucleoside analogues was synthesized and then submitted to enzymatic phosphorolysis as well. This assay revealed that 1‐, 2‐, 6‐ and 7‐modified nucleosides are accepted as substrates, whereas 8‐substituted nucleosides are not. A few transglycosylation reactions were carried out using 7‐methylguanosine iodide ( 4 ) as a D ‐ribose donor and 6‐substituted purines as acceptor. In particular, following this approach, 2‐amino‐6‐chloropurine‐9‐riboside ( 2c ), 6‐methoxypurine‐9‐riboside ( 2d ) and 2‐amino‐6‐(methylthio)purine‐9‐riboside ( 2g ) were synthesized in very high yield and purity.  相似文献   

18.
A series of sugar‐modified derivatives of cytostatic 7‐heteroaryl‐7‐deazaadenosines (2′‐deoxy‐2′‐fluororibo‐ and 2′‐deoxy‐2′,2′‐difluororibonucleosides) bearing an aryl or heteroaryl group at position 7 was prepared and screened for biological activity. The difluororibonucleosides were prepared by non‐ stereoselective glycosidation of 6‐chloro‐7‐deazapurine with benzoyl‐protected 2‐deoxy‐2,2‐difluoro‐D ‐erythro‐pentofuranosyl‐1‐mesylate, followed by amination and aqueous Suzuki cross‐couplings with (het)arylboronic acids. The fluororibo derivatives were prepared by aqueous palladium‐catalyzed cross‐coupling reactions of the corresponding 7‐iodo‐7‐deazaadenine 2′‐deoxy‐2′‐fluororibonucleoside 20 with (het)arylboronic acids. The key intermediate 20 was prepared by a six‐step sequence from the corresponding arabinonucleoside by selective protection of 3′‐ and 5′‐hydroxy groups with acid‐labile groups, followed by stereoselective SN2 fluorination and deprotection. Some of the title nucleosides and 7‐iodo‐7‐deazaadenine intermediates showed micromolar cytostatic or anti‐HCV activity. The most active were 7‐iodo and 7‐ethynyl derivatives. The corresponding 2′‐deoxy‐2′,2′‐difluororibonucleoside 5′‐O‐triphosphates were found to be good substrates for bacterial DNA polymerases, but are inhibitors of human polymerase α.  相似文献   

19.
20.
Degradation of native κ‐carrageenan was performed using acid hydrolysis aided with microwave heating. Combined with nonofiltration membrane (cut‐off molecular weight 250 Da) separation, 1. 400 Da ‐ 50 kDa low‐molecular‐weight (LMW) κ‐carrageenans were obtained. Narrow molecular weight distribution of LMW κ‐carrageenans could be prepared under pH 2.18 during the microwave power range investigated. The in vivo anti‐influenza virus (IV) activity of three kinds of LMW κ‐carrageenans (3, 5, and 10 kDa), their acetylated derivatives (acetylation degree of 1.5), as well as an acetylated and sulfated derivative of 3 kDa carrageenan (acetylation degree of 1.0 and sulfation degree of 2.4), were investigated using FM1‐induced pulmonary oedema model. These LMW κ‐carrageenans showed significant inhibition against FM1‐induced pulmonary oedema as compared with the virus control, although their activities were inferior to that of positive control, Rabivirin. Introduction of acetyl groups greatly increased their anti‐IV activity. The acetylated 3‐kDa κ‐carrageenan exhibited comparative activity with Rabivirin at both doses of 6 and 30 2. mg/kg·d, and the acetylated and sulfated derivative of 3 kDa carrageenan displayed higher activity than Rabivirin at the dose of 30 mg/kg·d. These results disclosed that 3 kDa κ‐carrageenan with proper acetylation degree and sulfation degree was a potential candidate against influenza virus. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号