首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is an ever increasing need to use optimization methods for thermal design of data centers and the hardware populating them. Airflow simulations of cabinets and data centers are computationally intensive and this problem is exacerbated when the simulation model is integrated with a design optimization method. Generally speaking, thermal design of data center hardware can be posed as a constrained multi-objective optimization problem. A popular approach for solving this kind of problem is to use Multi-Objective Genetic Algorithms (MOGAs). However, the large number of simulation evaluations needed for MOGAs has been preventing their applications to realistic engineering design problems. In this paper, details of a substantially more efficient MOGA are formulated and demonstrated through a thermal analysis simulation model of a data center cabinet. First, a reduced-order model of the cabinet problem is constructed using the Proper Orthogonal Decomposition (POD). The POD model is then used to form the objective and constraint functions of an optimization model. Next, this optimization model is integrated with the new MOGA. The new MOGA uses a “kriging” guided operation in addition to conventional genetic algorithm operations to search the design space for global optimal design solutions. This approach for optimal design is essential to handle complex multi-objective situations, where the optimal solutions may be non-obvious from simple analyses or intuition. It is shown that in optimizing the data center cabinet problem, the new MOGA outperforms a conventional MOGA by estimating the Pareto front using 50% fewer simulation calls, which makes its use very promising for complex thermal design problems. Recommended by: Monem Beitelmal  相似文献   

2.
Multi-objective optimisation problems have seen a large impulse in the last decades. Many new techniques for solving distinct variants of multi-objective problems have been proposed. Production scheduling, as with other operations management fields, is no different. The flowshop problem is among the most widely studied scheduling settings. Recently, the Iterated Greedy methodology for solving the single-objective version of the flowshop problem has produced state-of-the-art results. This paper proposes a new algorithm based on Iterated Greedy technique for solving the multi-objective permutation flowshop problem. This algorithm is characterised by an effective initialisation of the population, management of the Pareto front, and a specially tailored local search, among other things. The proposed multi-objective Iterated Greedy method is shown to outperform other recent approaches in comprehensive computational and statistical tests that comprise a large number of instances with objectives involving makespan, tardiness and flowtime. Lastly, we use a novel graphical tool to compare the performances of stochastic Pareto fronts based on Empirical Attainment Functions.  相似文献   

3.
A multi-objective optimization for green supply chain network design   总被引:2,自引:0,他引:2  
In this paper, we study a supply chain network design problem with environmental concerns. We are interested in the environmental investments decisions in the design phase and propose a multi-objective optimization model that captures the trade-off between the total cost and the environment influence. We conduct a comprehensive set of numerical experiments. The results show that our model can be applied as an effective tool in the strategic planning for green supply chain. Meanwhile, the sensitivity analysis provides some interesting managerial insights for firms.  相似文献   

4.
一种子群体个数动态变化的多目标优化协同进化算法   总被引:6,自引:0,他引:6  
给出一种新型的在多目标优化条件下的进化算法群体停滞判别准则,并基于该准则提出一种合作型多目标优化协同进化算法.该算法在运行过程中自适应地决定子群体的新增和灭绝.使得子群体个数依据需要动态变化,减小了对计算资源的消耗,并解决了对复杂多目标优化问题难以事先进行分解的问题.对所提算法的计算复杂度进行了理论分析,并把它与已有的多目标进化算法进行了比较,结果表明所提算法具有较高的搜索性能.  相似文献   

5.
This paper proposes several novel hybrid ant colony optimization (ACO)-based algorithms to resolve multi-objective job-shop scheduling problem with equal-size lot splitting. The main issue discussed in this paper is lot-splitting of jobs and tradeoff between lot-splitting costs and makespan. One of the disadvantages of ACO is its uncertainty on time of convergence. In order to enrich search patterns of ACO and improve its performance, five enhancements are made in the proposed algorithms including: A new type of pheromone and greedy heuristic function; Three new functions of state transition rules; A nimble local search algorithm for the improvements of solution quality; Mutation mechanism for divisive searching; A particle swarm optimization (PSO)-based algorithm for adaptive tuning of parameters. The objectives that are used to measure the quality of the generated schedules are weighted-sum of makespan, tardiness of jobs and lot-splitting cost. The developed algorithms are analyzed extensively on real-world data obtained from a printing company and simulated data. A mathematical programming model is developed and paired-samples t-tests are performed between obtained solutions of mathematical programming model and proposed algorithms in order to verify effectiveness of proposed algorithms.  相似文献   

6.
Information and communication technology (ICT) has a profound impact on environment because of its large amount of CO2 emissions. In the past years, the research field of “green” and low power consumption networking infrastructures is of great importance for both service/network providers and equipment manufacturers. An emerging technology called Cloud computing can increase the utilization and efficiency of hardware equipment. The job scheduler is needed by a cloud datacenter to arrange resources for executing jobs. In this paper, we propose a scheduling algorithm for the cloud datacenter with a dynamic voltage frequency scaling technique. Our scheduling algorithm can efficiently increase resource utilization; hence, it can decrease the energy consumption for executing jobs. Experimental results show that our scheme can reduce more energy consumption than other schemes do. The performance of executing jobs is not sacrificed in our scheme. We provide a green energy-efficient scheduling algorithm using the DVFS technique for Cloud computing datacenters.  相似文献   

7.
A robust scheduling method based on a multi-objective immune algorithm   总被引:2,自引:0,他引:2  
A robust scheduling method is proposed to solve uncertain scheduling problems. An uncertain scheduling problem is modeled by a set of workflow models, and then a scheduling scheme (solution) of the problem can be evaluated by workflow simulations executed with the workflow models in the set. A multi-objective immune algorithm is presented to find Pareto optimal robust scheduling schemes that have good performance for each model in the set. The two optimization objectives for scheduling schemes are the indices of the optimality and robustness of the scheduling results. An antibody represents a resource allocation scheme, and the methods of antibody coding and decoding are designed to deal with resource conflicts during workflow simulations. Experimental tests show that the proposed method can generate a robust scheduling scheme that is insensitive to uncertain scheduling environments.  相似文献   

8.
This study considers a multi-objective dynamic stochastic districting and routing problem in which the customers of a territory stochastically evolve over several periods of a planning horizon, and where the number of service vehicles, the compactness of the districts, the dissimilarity measure of the districts and an equity measure of vehicles profit are considered as objectives. The problem is modeled and solved as a two-stage stochastic program, where in each period, districting decisions are made in the first stage, and the Beardwood–Halton–Hammersley formula is used to approximate the expected routing cost of each district in the second stage. An enhanced multi-objective evolutionary algorithm (MOEA), i.e., the preference-inspired co-evolutionary algorithm using mating restriction, is developed for the problem. The algorithm is tested on randomly generated instances and is compared with two state-of-the-art MOEAs. Computational results confirm the superiority and effectiveness of the proposed algorithm. Moreover, a procedure for selecting a preferred design for the proposed problem is described.  相似文献   

9.
Developing energy-efficient clusters not only can reduce power electricity cost but also can improve system reliability. Existing scheduling strategies developed for energy-efficient clusters conserve energy at the cost of performance. The performance problem becomes especially apparent when cluster computing systems are heavily loaded. To address this issue, we propose in this paper a novel scheduling strategy–adaptive energy-efficient scheduling or AEES–for aperiodic and independent real-time tasks on heterogeneous clusters with dynamic voltage scaling. The AEES scheme aims to adaptively adjust voltages according to the workload conditions of a cluster, thereby making the best trade-offs between energy conservation and schedulability. When the cluster is heavily loaded, AEES considers voltage levels of both new tasks and running tasks to meet tasks’ deadlines. Under light load, AEES aggressively reduces the voltage levels to conserve energy while maintaining higher guarantee ratios. We conducted extensive experiments to compare AEES with an existing algorithm–MEG, as well as two baseline algorithms–MELV, MEHV. Experimental results show that AEES significantly improves the scheduling quality of MELV, MEHV and MEG.  相似文献   

10.
In order to reduce logistic costs, the scheduling of logistic tasks and resources for fourth party logistics (4PL) is studied. Current scheduling models only consider costs and finish times of each logistic resource or task. Not generally considered are the joint cost and time between two adjacent activities for a resource to process and two sequential activities of a task for two different resources to process are ignored. Therefore, a multi-objective scheduling model aiming at minimizing total operation costs, finishing time and tardiness of all logistic tasks in a 4PL is proposed. Not only are the joint cost and time of logistic activities between two adjacent activities and two sequential activities included but the constraints of resource time windows and due date of tasks are also considered. An improved nondominated sorting genetic algorithm (NSGA-II) is presented to solve the model. The validity of the proposed model and algorithm are verified by a corresponding case study.  相似文献   

11.
To enable the immediate and efficient dispatch of relief to victims of disaster, this study proposes a greedy-search-based, multi-objective, genetic algorithm capable of regulating the distribution of available resources and automatically generating a variety of feasible emergency logistics schedules for decision-makers. The proposed algorithm dynamically adjusts distribution schedules from various supply points according to the requirements at demand points in order to minimize unsatisfied demand for resources, time to delivery, and transportation costs. The proposed algorithm was applied to the case of the Chi–Chi earthquake in Taiwan to verify its performance. Simulation results demonstrate that under conditions of a limited/unlimited number of available vehicles, the proposed algorithm outperforms the MOGA and standard greedy algorithm in ‘time to delivery’ by an average of 63.57% and 46.15%, respectively, based on 10,000 iterations.  相似文献   

12.
针对当前云计算数据中心资源调度过程耗时长、能耗高、数据传输准确性较低的问题,提出基于VR沉浸式的虚拟化云计算数据中心资源节能调度算法。构建云计算数据中心资源采样模型,结合虚拟现实(virtual reality,VR)互动装置输出、转换、调度中心资源,提取中心资源的关联规则特征量,采用嵌入式模糊聚类融合分析方法三维重构中心资源,建立虚拟化云计算数据中心资源的信息融合中心,采用决策相关性分析方法,结合差异化融合特征量实现对数据中心资源调度,实现虚拟化云计算数据中心资源实时节能调度。仿真结果表明,采用该方法进行虚拟化云计算数据中心资源节能调度的数据传输准确性较高,时间开销较短,能耗较低,在中心资源调度中具有很好的应用价值。  相似文献   

13.
This paper presents a new, carefully designed algorithm for five bi-objective permutation flow shop scheduling problems that arise from the pairwise combinations of the objectives (i) makespan, (ii) the sum of the completion times of the jobs, and (iii) both, the weighted and non-weighted total tardiness of all jobs. The proposed algorithm combines two search methods, two-phase local search and Pareto local search, which are representative of two different, but complementary, paradigms for multi-objective optimization in terms of Pareto-optimality. The design of the hybrid algorithm is based on a careful experimental analysis of crucial algorithmic components of these two search methods. We compared our algorithm to the two best algorithms identified, among a set of 23 candidate algorithms, in a recent review of the bi-objective permutation flow-shop scheduling problem. We have reimplemented carefully these two algorithms in order to assess the quality of our algorithm. The experimental comparison in this paper shows that the proposed algorithm obtains results that often dominate the output of the two best algorithms from the literature. Therefore, our analysis shows without ambiguity that the proposed algorithm is a new state-of-the-art algorithm for the bi-objective permutation flow-shop problems studied in this paper.  相似文献   

14.
Flexible job-shop scheduling problem (FJSP) is an extension of the classical job-shop scheduling problem. Although the traditional optimization algorithms could obtain preferable results in solving the mono-objective FJSP. However, they are very difficult to solve multi-objective FJSP very well. In this paper, a particle swarm optimization (PSO) algorithm and a tabu search (TS) algorithm are combined to solve the multi-objective FJSP with several conflicting and incommensurable objectives. PSO which integrates local search and global search scheme possesses high search efficiency. And, TS is a meta-heuristic which is designed for finding a near optimal solution of combinatorial optimization problems. Through reasonably hybridizing the two optimization algorithms, an effective hybrid approach for the multi-objective FJSP has been proposed. The computational results have proved that the proposed hybrid algorithm is an efficient and effective approach to solve the multi-objective FJSP, especially for the problems on a large scale.  相似文献   

15.
This paper presents an interval algorithm for solving multi-objective optimization problems. Similar to other interval optimization techniques, [see Hansen and Walster (2004)], the interval algorithm presented here is guaranteed to capture all solutions, namely all points on the Pareto front. This algorithm is a hybrid method consisting of local gradient-based and global direct comparison components. A series of example problems covering convex, nonconvex, and multimodal Pareto fronts is used to demonstrate the method.  相似文献   

16.
Multi-objective job shop scheduling (MOJSS) problems can be found in various application areas. The efficient solution of MOJSS problems has received continuous attention. In this research, a new meta-heuristic algorithm, namely the Intelligent Water Drops (IWD) algorithm is customized for solving the MOJSS problem. The optimization objective of MOJSS in this research is to find the best compromising solutions (Pareto non-dominance set) considering multiple criteria, namely makespan, tardiness and mean flow time of the schedules. MOJSS-IWD, which is a modified version of the original IWD algorithm, is proposed to solve the MOJSS problem. A scoring function which gives each schedule a score based on its multiple criteria values is embedded into the MOJSS-IWD’s local search process. Experimental evaluation shows that the customized IWD algorithm can identify the Pareto non-dominance schedules efficiently.  相似文献   

17.
研究了基于多级Clos数据中心网络的光电交换架构下的流量调度算法,以减少数据传输时延,同时也保证无丢包。传统ADAPT调度算法能实现加速比最小化,但仍然有一些空闲时间槽,而造成带宽未被充分利用。为了解决该问题,在多级Clos网络中,提出了一个多跳路由和调度(Multi-Hop Routing and Scheduling,MHRS)算法,该算法可以在不增加加速比的同时充分利用空闲的带宽。与ADAPT算法类似,MHRS算法先将流量矩阵分解为商矩阵和余矩阵,然后实现两步调度,即将单跳作为第一步,将多跳作为第二步。第一步将余矩阵中的一些数据包调度到商矩阵所形成的配置矩阵的空闲时间槽中,而当这些数据包不能在第一步中被直接调度时,则采用第二步绕道的多跳调度过程传输数据包。仿真结果证明,在多级Clos网络中MHRS算法比ADAPT算法性能更好。  相似文献   

18.
This paper presents a novel, two-phase approach for optimal generation scheduling, taking into account the environmental issue of emission allowance trading in addition to the economic issue of operation cost. In the first phase, hourly-optimal scheduling is done to simultaneously minimize operation cost, emission, and transmission loss, while satisfying constraints such as power balance, spinning reserve and power generation limits. In the second phase, the minimum up/down time and ramp up/down rate constraints are considered, and a set of 24-h optimal schedules is obtained using the outputs of the first phase. Simulation results indicate effectiveness of the proposed approach.  相似文献   

19.
求解多目标优化问题的一种多子群体进化算法   总被引:1,自引:0,他引:1  
提出一种新的多目标粒子群优化(MOPSO)算法,根据多目标优化问题(MOP)的特点,将一个进化群体分成若干个子群体,利用非劣支配的概念构造全局最优区域,用以指导整个粒子群的进化.通过子群体间的信息交换.使整个群体分布更均匀,并且避免了局部最优,保证了解的多样性,通过很少的迭代次数便可得到分布均匀的Pareto有效解集.数值实验表明了该算法的有效性.  相似文献   

20.
In this paper, a mixed-model assembly line (MMAL) sequencing problem is studied. This type of production system is used to manufacture multiple products along a single assembly line while maintaining the least possible inventories. With the growth in customers’ demand diversification, mixed-model assembly lines have gained increasing importance in the field of management. Among the available criteria used to judge a sequence in MMAL, the following three are taken into account: the minimization of total utility work, total production rate variation, and total setup cost. Due to the complexity of the problem, it is very difficult to obtain optimum solution for this kind of problems by means of traditional approaches. Therefore, a hybrid multi-objective algorithm based on shuffled frog-leaping algorithm (SFLA) and bacteria optimization (BO) are deployed. The performance of the proposed hybrid algorithm is then compared with three well-known genetic algorithms, i.e. PS-NC GA, NSGA-II, and SPEA-II. The computational results show that the proposed hybrid algorithm outperforms the existing genetic algorithms, significantly in large-sized problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号