首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
为计算应力状态下预应力混凝土在一定条件下的碳化深度,将混凝土应力水平取为影响碳化速度的参数.在已有试验结果的基础上,分别建立了预应力混凝土碳化深度实用计算模型,以及BP网络、径向基函数(RBF)网络和广义回归(GRNN)网络的三个神经网络预测模型,并通过实例将碳化深度试验值、实用公式计算值及神经网络预测值进行了比较分析.结果表明:考虑混凝土应力水平对碳化深度的影响是合理的,试验回归得到的实用碳化模型计算误差在9%以内;同时,所建立的BP、RBF以及GRNN网络模型均具有较高的计算精度以及良好的泛化能力,仿真和预测误差基本上在5%和4%以内,均低于实用计算模型的误差值.由此可见,所建神经网络模型的仿真及预测结果是理想的,可同时考虑各种影响因素组合、行之有效的混凝土碳化深度预测方法.  相似文献   

2.
基于小波神经网络的时间序列预报方法及应用   总被引:13,自引:0,他引:13  
传统的时间序列预测模型在处理具有非线性特性或非平稳时间序列问题,特别是对有人参与的主动系统、社会经济系统的预测上,无法取得满意的预测效果.寻求处理这类系统的方法是人们一直努力的方向.这里以小波理论为基础,重点研究了小波网络在非线性时间序列中的建模预测方法,利用深圳综合指数数据,建立了股票指数预测模型.该模型克服了传统的时间序列预测模型仅局限于线性系统的情况,避免了BP神经网络模型固有的缺陷.仿真结果表明,该方法比神经网络预测方法的预测精度高,可以很好地应用于某些非线性时间序列的预测中.  相似文献   

3.
基于BP神经网络的单层钢筋混凝土柱工业厂房震害预测   总被引:4,自引:0,他引:4  
将人工神经网络理论应用于等高单层钢筋混凝土柱工业厂房的震害预测.在分析震害特点的基础上,将震害影响因子分为精确性和规律性两大类,提出以地震反应指标、天窗类型、支撑情况、建筑材料作为主要的影响因子,并给出了相应的量化取值范围,然后将震害等级作为输出结果,构造了震害预测的BP人工神经网络.通过对52个实际震害实例的检验,网络的准确率超过80%.计算结果证明了该人工神经网络的有效性.  相似文献   

4.
为对畸形波这类突发性事件进行较为准确的预报,避免畸形波对海上建筑物和人员安全产生的巨大危害.采用紧致型小波神经网络模型,根据某岛礁地形实测数据建立的岛礁三维模型中测得的波高试验数据,选取试验数据中3种典型波高时间序列分别实现了包含畸形波的波浪数据对常规波浪的预报、包含近似畸形波的波浪数据对畸形波的预报以及常规波浪对包含...  相似文献   

5.
采用人工神经网络方法,建立高性能混凝土原材料配合比与其早龄期自干燥收缩之间的非线性映射关系。计算结果表明,该模型可以预测不同配合比混凝土的早龄期自干燥收缩,为高性能混凝土体积稳定性的研究提供一种思路。  相似文献   

6.
神经网络用于近海水质预测的研究   总被引:1,自引:0,他引:1  
运用神经网络,提出一种完全依据环境监测数据的近海水质预测模型.首先,根据以往的研究成果,确定预测模型的输入和输出因子;然后,针对训练样本序列短、群体小的特点,采用自动正则化技术避免了网络的过拟合问题;在此基础上,研究确定网络的最小结构并作适当放大,保证网络充分拟合;最后,对入海河流监测数据进行处理,实现输入和输出因子的频率一致性.经过网络训练,预测平均误差为26.46%,满足环境管理的精度要求.应用表明,这预测方法避免了机理性研究对众多基础数据的要求,原理简单,实用性强,能够为环境管理提供决策支持.  相似文献   

7.
基于模糊神经网络的水泥强度预测   总被引:1,自引:0,他引:1  
利用软计算技术预测水泥强度不但是一项新的尝试,而且具有较高的理论和应用价值。本文利用模糊神经网络良好的非线性逼近能力建立了水泥强度的模糊神经网络预测模型。模糊神经网络的学习算法采用的是快速的粒子群优化算法。仿真结果表明,该模型在预测水泥28d强度方面达到了很高的精度,有较好的实用价值。  相似文献   

8.
为了理论解决BP神经网络在进行多目标预测中出现的识别率和可信度不高的问题,提出了一种基于DS证据理论优化的BP神经网络预测模型用于疾病预测,实验中,对心脏病数据进行处理,结果表明,在预测准确度和算法鲁棒性方面,都具有较好的效果。  相似文献   

9.
基于人工神经网络的爆破震动速度峰值的预报   总被引:4,自引:0,他引:4  
介绍了BP神经网络知识,建立了3层BP神经网络模型,并将此模型应用于爆破震动速度峰值的预测,并将其预测值与常规方法的预测值进行了比较.  相似文献   

10.
介绍了一种新型大柔性灵巧手指,该手指弯曲性能好、易于控制但数学建模复杂.基于BP神经网络基本理论,建立预测该手指弯曲角度的BP神经网络模型.通过大柔性灵巧手指弯曲特性实验获得样本数据,借助于MATLAB仿真软件中的神经网络工具箱作为开发平台,将实验样本数据用于BP网络训练.利用训练好的BP网络模型对手指弯曲角度进行预测,预测误差范围控制在3%以内.研究结果表明:这种神经网络模型能够准确预测手指的弯曲角度.  相似文献   

11.
提出一种新型的神经网络线性预测编码算法.针对目前自相关法存在着预测系数解误差以及协方差法存在解不稳定的缺点,算法利用最小均方准则思想显著提高了短时平均误差精度.通过窄带信道将低速率语音编码远距离传输是多媒体语音技术中的重要研究内容,采用语音信号压缩处理是解决低速率传输的有效方法之一,而线性预测编码(LPC)技术是语音压缩参数编码技术的重要内容.从线性预测编码技术入手分析和研究LPC编码技术的原理,阐述了利用最小均方准则思想来提高短时平均误差精度的方法,并介绍了预测系数的自相关求法.最后通过语音合成实验验证了该新型算法既提高了系数解的精度,又保证了系统的稳定性.在该算法下预测系数的均方误差比传统的自相关法误差减小20%以上,而且当原始信号频率较高时语音合成的效果更明显,将更加精确地复现原始语音信号.  相似文献   

12.
改进的BP神经网络模型预测充填体强度   总被引:2,自引:1,他引:2  
为了准确评价和预测充填体强度,采用改进的BP神经网络算法,利用实验室做的18组充填体单轴抗压强度试验结果,建立了充填体强度与影响因素之间的5-7-1网络模型结构(输入层为5个神经元,隐含层为7个神经元,输出层为1个神经元,输入为胶砂比及各胶凝材料掺量,输出为充填体28 d单轴抗压强度).结果表明,改进的BP神经网络对于充填体的强度具有良好的预测能力,建立的网络模型不仅收敛速度快而且训练精度高,对充填体强度的预测结果与训练数据和测试数据的最大相对误差仅为4.23%.  相似文献   

13.
暂态混沌神经网络是一种基于Hopfield网络提出的混沌神经网络,具有收敛速度快、不易陷入局部极小等优点.许多低阶的混沌系统都可以展成二阶volterra级数,因此提出一种基于暂态混沌神经网络和volterra级数的低阶混沌时间序列预测方法.该方法利用暂态混沌神经网络计算系统的volterra级数系数,确定系统的动力学模型,从而实现混沌时间序列预测.利用Logistic模型对该方法进行测试,结果表明,预测相对误差小于0.5%,预测可达到较高的速度和精度.  相似文献   

14.
基于遗传算法的小波神经网络交通流预测   总被引:1,自引:0,他引:1  
城市交通流的运行存在着高度的复杂性、时变性和随机性,实时准确的交通流预测是智能交通系统,特别是先进的交通管理系统与先进的出行者信息系统研究的关键.基于交通流预测的特点,给出了基于遗传算法的小波神经网络的交通预测模型GA-WNN,用具有自然进化规律的遗传算法来对小波神经网络的连接权值和伸缩平移尺度进行前期优化训练,部分代替了小波框架神经网络中按单一梯度方向进行参数优化的梯度下降法,克服了单一梯度下降法易陷入局部极小和引起振荡效应等缺陷.仿真实验验证了GA-WNN预测模型对短时交通流的预测的有效性.  相似文献   

15.
基于遗传算法的小波神经网络交通流预测   总被引:3,自引:0,他引:3  
城市交通流的运行存在着高度的复杂性、时变性和随机性,实时准确的交通流预测是智能交通系统,特别是先进的交通管理系统与先进的出行者信息系统研究的关键. 基于交通流预测的特点,给出了基于遗传算法的小波神经网络的交通预测模型GA WNN,用具有自然进化规律的遗传算法来对小波神经网络的连接权值和伸缩平移尺度进行前期优化训练,部分代替了小波框架神经网络中按单一梯度方向进行参数优化的梯度下降法,克服了单一梯度下降法易陷入局部极小和引起振荡效应等缺陷. 仿真实验验证了GA WNN预测模型对短时交通流的预测的有效性.  相似文献   

16.
针对电梯运行过程中存在爬行距离的问题,提出了基于RBF(Radial Basis Function)神经网络的爬行距离预测模型.将预测的爬行距离增加到电梯速度曲线的匀速段,实现减小或消除爬行距离的目的,从而实现电梯的零速停靠.从电梯运行现场采集大量的原始数据,建立RBF神经网络预测模型,与BP(Back Propagation)预测方法进行仿真比较,结果表明RBF神经网络具有更好的预测效果.给出了应用零速停靠RBF预测算法前后电梯运行的速度曲线,爬行距离减小或消除,电梯的运行时间变短,实现了节能.  相似文献   

17.
基于模糊神经网络的周期性结垢预测方法研究   总被引:2,自引:0,他引:2  
针对间歇换热设备的周期性结垢现象,以及由此引起的对象特性时变并造成常规控制器动态性能下降等问题,提出了一种基于模糊神经网络(FNN)的周期性结垢预测方法.把间歇换热设备的周期性结垢分解为可逆垢和不可逆垢,通过两个多入单出四层模糊神经网络分别学习结垢的短周期可逆垢增长趋势和长周期不可逆垢增长趋势,并由两者的组合得到更为精确的污垢热阻预测值.实验结果表明,使用该方法对于一类间歇式麦汁蒸发器污垢热阻的预测精度较经验估计式明显提高,利用该预测方法所构造的时变增益补偿因子在麦汁蒸发器蒸发强度控制系统中亦获得了成功应用.  相似文献   

18.
为了对太阳能电站VRLA蓄电池进行有效的保护,防止蓄电池的过放电,本文对VRLA蓄电池进行准确的容量预测。在分析了铅酸蓄电池充放电过程的反应机理的基础上,应用RBF神经网络建立了铅酸蓄电池的数学模型,用于预测铅酸蓄电池放电过程某一状态下的剩余容量。实验结果表明该网络模型可以快速、准确得到蓄电池剩余容量。  相似文献   

19.
基于EKF的神经网络在变形预测中的应用   总被引:2,自引:0,他引:2  
给出了一种用于变形预测的基于扩展Kalman滤波的神经网络学习算法,与BP算法相比,该方法具有更好的收敛率和学习能力.实例计算表明,该方法具有较高的精度和较快的计算速度.  相似文献   

20.
针对水质数据在时间和空间维度上的复杂依赖关系,提出基于图神经网络(GNN)的地表水水质预测模型. 该模型采用GNN建模地表水水质监测站点在空间上的复杂依赖关系,使用长短时记忆网络(LSTM)建模水质指标序列在时间上的复杂依赖关系,将编码结果输入到解码器中得到预测输出. 实验结果表明,与时间序列分析方法、通用回归方法和一般深度学习方法相比,该模型能够实现23.3%、26.6%和14.8%的性能提升.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号