首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
冷凝器流程布置方案的研究与探讨   总被引:2,自引:0,他引:2  
邓斌  陶文铨  林澜 《制冷学报》2006,27(2):31-38
基于传热单元法,建立了冷凝器的稳态分布参数模型。经与前人的实验研究结果进行对比,数值模拟结果与实验结果吻合良好。运用该模型详细分析了六种不同流程布置的二排管冷凝器的换热和流动特性。研究结果表明:单回路冷凝器中,逆流布置换热最好,错流其次,顺流最差;对任一流程布置的冷凝器,当风量不变时,必然存在一最佳冷媒流量使冷凝器性能达到最佳;当冷媒流量保持不变时,也相应存在一个最佳风量,使冷凝器性能最佳。冷凝器流路布置中,重力的影响不可忽略。针对单回路冷凝器进出口总压降过大,沿程压降、热阻及换热系数分布不均匀,提出了一些实用性的分流原则,如双“N”流路,相变点分流等并进行了深入细致的讨论。该研究方法为冷凝器流程布置的优化设计提供了理论基础和指导方向。  相似文献   

2.
The heat transfer performance variations of condensers that are caused by non-uniform distributions of air flows are investigated using a numerical simulation method. A heat exchanger designed for the outdoor unit of a heat pump system is selected and represented using a numerical model. A non-uniform profile of the air velocity is constructed through measuring the air velocity at various locations on the outdoor unit. Numerical analyses are conducted for various refrigerant circuits and air flow conditions. The results demonstrate that the heat transfer capacity is reduced depending on the air flow rate and the refrigerant circuit configuration. It is also demonstrated that the capacity reduction rate is increased as the average air velocity decreases.  相似文献   

3.
The present paper discusses (a) the analysis of a wire-on-tube condenser under varying operating conditions of free convection using FEM, and (b) experimental verification of the performance of two wire-on-tube condensers in a retrofitted domestic refrigerator using refrigerant R-134a. The study is motivated by the desire to investigate if the wire-on-tube condensers used in R-12 based refrigerators could be used in a modified refrigerator using R-134a refrigerant. Experiments were conducted in a climate chamber under controlled and varying ambient temperatures and mass flow rates to determine the locations where phase change occurs and the degree of subcooling achieved. In terms of initial and final phase change point locations the predicted results agree with the experimental results to within ±10%. The analysis and the experiments also lead to the information about the adequacy of the number of tubes for complete condensation of the refrigerant vapour under given operating conditions. The methodology can be used as a design tool for the design of wire-on-tube condenser of a small refrigerator as well as the suitability of specific decommissioned condensers for use in a retrofitted refrigerator. It also indicates that R-12 based refrigerators using wire-on-tube condensers retrofitted with R-134a compressor and refrigerant deserve and warrant further studies for adoption.  相似文献   

4.
The effect of different type of condensers on the performance of R410A residential air-conditioning systems was investigated in this study. Two R410A residential air-conditioning systems, one with a microchannel condenser and the other with a round-tube condenser, were examined experimentally, while the other components of the two systems were identical except the condensers. Two condensers had almost same package volumes. The two systems were operated in separate environmental chambers and their performance was measured in ARI A, B, and C conditions. Both the COP and cooling capacity of the system with the microchannel condenser were higher than those for the round-tube condenser in all test conditions. The refrigerant charge amount and the refrigerant pressure drop were measured; the results showed a reduction of charge and pressure drop in the microchannel condenser. A numerical model for the microchannel condenser was developed and its results were compared with the experiments. The model simulated the condenser with consideration given to the non-uniform air distribution at the face of the condenser and refrigerant distribution in the headers. The results showed that the effect of the air and refrigerant distribution was not a significant parameter in predicting the capacity of the microchannel condenser experimentally examined in this study. Temperature contours, generated from the measured air exit temperatures, showed the refrigerant distribution in the microchannel condenser indirectly. The temperature contours developed from the model results showed a relatively good agreement with the contours for measured air exit temperatures of the microchannel condenser.  相似文献   

5.
It is well known that the presence of non-condensable gases inside a compression vapour refrigerating circuit introduces an additional thermal resistance at the condenser, which can significantly decrease the energy efficiency of the system. However, this problem so far has been investigated mainly for shell and tube condensers of large capacity and limited information is available on small systems, as is the case for household appliances where the internal volumes are extremely reduced and therefore a very small amount of non-condensable gas has large effect. Moreover, non-condensable gas behaves differently when condensation takes place outside tubes (shell and tube condensers) or inside tubes (condensers of small appliances); in the first case all heat transfer area is wrapped by a gas layer, whereas in the second case non-condensable gas is collected at the end of the tube. The effect of non-condensable gas in this work is experimentally investigated by injecting controlled amounts of air into a refrigerating circuit and by recording the thermal and electric variables during different modes of operation (steady state and cyclic running). The tested refrigerating circuits are part of two appliances on the market, a household refrigerator and a vertical freezer. The presence of non-condensable gas was found to spoil energy efficiency, since it brings about an increase in condensing pressure and a concomitant decrease in evaporating temperature, although larger liquid subcooling partially compensates for the first negative effects: the reason for this behaviour is the clogging action of bubbles of gaseous mixture (air and refrigerant vapour) that enter the capillary tube.  相似文献   

6.
来流不均匀性对冷凝器性能影响的数值研究   总被引:1,自引:0,他引:1  
基于相关文献提出的冷凝器分布参数模型,运用该模型分析了不同来流分布、不同冷媒流量、不同流程布置以及不同换热管排数时来流不均匀性对冷凝器性能的影响,得出了一些实用性的结论。研究表明:不同的空气来流分布形式对冷凝器性能的影响程度不同,不均匀程度的大小可以由不均匀因子τ来衡量,当来流不均匀程度增大时,不均匀因子τ增大,冷凝器换热性能恶化,整体性能下降。  相似文献   

7.
Pronounced hydrodynamic and thermodynamic non-equilibrium exist in the flow of refrigerant through a short tube orifice under typical operating conditions. A non-equilibrium two-fluid model (TFM) for refrigerant two-phase critical flow inside the short tube orifice is developed. Both inter-phase velocity slip and inter-phase temperature difference are taken into account in the model. The mass flow rate, the two-phase velocity and temperature distributions in a short tube orifice are simulated. Comparisons among the experimental data of refrigerants R134a, R12, R22, R410A and R407C flowing through short tubes, the predictions by the TFM and by the homogeneous equilibrium model (HEM) show that the TFM gives acceptable predictions with the deviations of ±20%, while the HEM underestimates the flow rate by 20% or so.  相似文献   

8.
单元式风冷冷风空调机组普遍采用波纹翅片管冷凝器。对冷凝器进行设计的关键是确定制冷工质在铜管内的冷凝换热系数及空气在翅片侧的表面换热系数,同时也需要考虑空气流过冷凝器的压降,以便选择风机。采用数学模型及换热关联式计算相关参数,在此基础上对R134a单元式风冷冷风空调机组的冷凝器进行设计。  相似文献   

9.
Air-conditioners use spirally coiled capillary tubes as an expansion device to enhance compactness of the unit. However, most empirical correlations for predicting refrigerant flow rate through capillary tubes were developed for straight capillary tubes without consideration of coiled effects. The objectives of this study are to investigate the flow characteristics of the coiled capillary tubes and to develop a generalized correlation for the mass flow rate through the coiled capillary tubes. The mass flow rate of R22 through the coiled capillary tubes and straight capillary tubes was measured for various operating conditions and tube geometries. The mass flow rates of the coiled capillary tubes decreased by 5–16% more than those of the straight capillary tubes at the same operating conditions. A generalized correlation for predicting refrigerant mass flow rate through coiled capillary tubes was developed by introducing the parameter of capillary equivalent length. The present correlation showed good predictions with the present database for R22, R407C and R410A in the straight and coiled capillary tubes, yielding average and standard deviations of 0.24% and 4.4%, respectively.  相似文献   

10.
A hybrid method for optimizing refrigerant distribution in evaporators is presented that involves the use of small balancing valves in each circuit along with a primary expansion device to control the overall superheat from the evaporator. The flow balancing valves could be located upstream or downstream of the evaporator. This paper presents the results of a study to investigate the benefits of this hybrid scheme for both upstream and downstream flow balancing for the case of air flow mal-distribution. In order to perform this investigation, a simulation model was developed to consider evaporator flow mal-distributions for a 10.55 kW residential R410A heat pump and then validated through comparisons of predicted results with measurements. Simulation results show that there are significant benefits in controlling the superheat of each circuit of evaporators through the hybrid–individual superheat control method. Furthermore, the upstream refrigerant flow control consistently outperforms the downstream refrigerant flow control, and recovers most of the loss in cooling capacity and COP due to non-uniform air flow distribution.  相似文献   

11.
分液冷凝器的管程理论设计及热力性能评价   总被引:1,自引:0,他引:1  
根据分液冷凝器强化换热思想对其管程理论设计方法进行了研究。依据质量流速和干度来判断每一流程中制冷剂的流型,并依此选取Cavallini换热模型公式的方法求其平均换热系数,同时采用Cavallini两相压降模型和Darcy-Weisbach单相压降模型分别确定冷凝区和过冷段的压降。针对一个案例计算了三种管程设计方案下冷凝器管内冷凝换热系数和端压值,并用惩罚因子PF对其综合热力性能进行了评价。计算结果表明:不同的管程设计方案中管内制冷剂的流量分配均匀性存在较大的差异,均匀性越好,其综合热力性能越优。在质量流速为1200~1500 kg/(m2.s)范围内,与同等换热面积的蛇形管冷凝器相比,其中最好的分液冷凝器的PF值减小了48.5%~54.1%,可见设计优良的分液冷凝器的综合热力性能明显优于蛇形管冷凝器。  相似文献   

12.
Some complex refrigeration and heat pump systems with several condensers and evaporators have been developed for different kinds of application. Traditional simulation models were developed for systems in certain operating modes and they failed in modeling the complex refrigeration systems with uncertainties of heat exchangers function and refrigerant flowing direction. In order to predict the performance of complex refrigeration systems, a simulation model is presented based on the two-phase fluid network. The model is consisted of distributed-parameter model of heat exchangers and connecting tubes, map-based model of inverter compressor and electronic expansion valve (EEV). Based on the characteristic of refrigeration system and fluid network, the three conservation equations, i.e. energy, momentum and mass equations, are solved iteratively. This model can deal with the uncertainty of refrigerant flow direction by separating the solving process of the components and the fluid network model, and therefore can simulate different kinds of complex refrigeration systems in different operating modes and conditions. The model is validated by the experimental data of an inverter air conditioner in heating/cooling operating modes and it shows the error of the model is mainly determined by the error of submodels of components in calculating heat transfer and pressure loss. The model is applied for performance analysis of three kinds of complex refrigeration systems in the accompanying article [Shi W.X., Shao, S.Q., Li, X.T., Yan, Q.S., 2008. Simulation model for complex heat pump systems based on two-phase fluid network: part II – model applications, International Journal of Refrigeration 31 (3), 500–509.].  相似文献   

13.
A new program was developed to analyze the heat transfer characteristics of fin and tube evaporators that use a zeotropic mixture refrigerant, R-407C, as the working fluid. The calculation algorithm is based on EVSIM (NIST), but a tube is segmented into several sections to provide a base unit for the calculations in this study. Therefore, two-dimensional air mal-distribution in the tube-length (horizontal) and vertical directions of the evaporator can be considered. The temperature gradient in the flow direction is traced using a discrete pattern to simulate the continuous variation found in actual evaporators. To validate the simulation results, 45 test cases in a real evaporator were performed with two different refrigerant flow path configurations using R-22 and R-407C refrigerants. The deviation between the simulations and test data was a maximum of 5.4%, and the trends were similar. The local heat transfer predictions were verified by comparing the numerical and test wall temperatures along the refrigerant flow path. Local temperature difference and the heat transfer contributions from each row are also analyzed along refrigerant flow path. And more, the impact of air mal-distribution is studied with two-dimensional four different types of velocity profiles and the significant difference in heat transfer is analyzed. The program developed in this study will be a useful tool to know all of information related with heat and mass transfer at any local point and can be used for improving the efficiency of zeotropic mixture refrigerant evaporators.  相似文献   

14.
A general distributed model with two-phase flow for refrigerant coupled with a frost model is developed for studying the dynamic behavior of an evaporator. The equations are derived in non-steady-state manner for the refrigerant and a quasi-steady state model with permeation for the frost. The complex flow and geometry of the finned tube evaporator lead to uneven wall and air temperature distributions, which in turn affect the rate of frost growth and densification along the coil depth. Results include frost accumulation and its effect on energy transfer, air off-coil temperature, refrigerant liquid dry-out position and propagation of frost formation along the coil.  相似文献   

15.
Experimental results are presented that show the effect of fin geometry on condensation of refrigerant HFC134a in a staggered bundle of horizontal finned tubes. Two types of conventional low-fin tubes and three types of three-dimensional fin tubes were tested. The refrigerant mass velocity ranged from 8 to 23 kg/m2s and the condensation temperature difference from 1.5 to 12 K. The effect of condensate inundation was more significant for the three-dimensional fin tubes than for the low-fin tubes. In most cases, the highest performance was obtained by the tube with a three-dimensional structure at the tip of low fins. In the case of high mass velocity and high condensate inundation rate, however, the highest performance was obtained by one of the low-fin tubes. The results were compared with previous results for bundles of smooth tubes and low-fin tubes.  相似文献   

16.
This study discusses the effects of the heat exchanger type, refrigerant, inner tube configuration, and fin geometry on evaporator performance by adopting updated correlations of EVSIM, a numerical analysis model based on the tube-by-tube method developed by Domanski. The heat exchanger types considered are the cross-counter flow type and cross-parallel flow type. The refrigerants considered for the numerical test as a working fluid are R-134a, R-410A and R-22. For inner tube configuration, enhanced tube and smooth tube cases are considered. For the air side evaporation performance, heat exchangers using plate fins, wavy fins and slit fins are analyzed. Results show that the heat transfer rate of the cross-counter flow type heat exchanger is 3% higher than that of the cross-parallel flow type with R-22. The total heat transfer rate of the evaporator using R-410A is higher than those using R-22 and R-134a, while the total pressure drop of R-410A is lower than those of R-22 and R-134a. The heat transfer rate of the evaporator using enhanced tubes is two times higher than that using smooth tubes, but the pressure drop of the enhanced tube is 45–50% higher than that of the smooth tubes. The evaporation performance of slit fins is superior to that of plate fins by 54%.  相似文献   

17.
Fin-and-tube heat exchangers are widely used in air conditioners, chillers, etc. A lot of factors, including arrangement of refrigerant circuits, configure specification of fins and tubes, and operating conditions, have significant influence on the performance of fin-and-tube heat exchangers. For the purpose of fast design of high performance heat exchangers, a simulator reflecting the influence of these factors is necessary. In this paper, a general steady state mathematic model based on the graph theory is presented. With the help of the directed graph and graph-based traversal methods (Breadth-first search and Depth-first search), this model is capable to describe any flexible refrigerant circuit arrangement, and quantify the refrigerant distribution in the refrigerant circuit and heat conduction through fins. An alternative iteration method is also developed to solve the conservation equations, which can shorten the simulating time effectively. The model is verified with the experimental results, and the maximum error is within ±10.0%. A simulator based on this model has been used for designing practical fin-and-tube heat exchangers.  相似文献   

18.
搭建微通道蒸发器性能实验台,采用控制变量法研究不同空气侧风速下微通道蒸发器表面温度分布、制冷剂进出口压力的变化规律,计算换热量和换热系数,从而分析空气侧风速对微通道蒸发器的流量分配特性和换热效果的影响。结果表明,随着风速增大,微通道蒸发器制冷剂流量分配不均匀性增大,进出口压力波动振幅和周期增加,压降增大,风速2 m/s时微通道蒸发器换热效果最佳。  相似文献   

19.
A simulation and design tool to improve effectiveness and efficiency in design, and analysis of air to refrigerant heat exchangers, CoilDesigner, is introduced. A network viewpoint was adopted to establish the general-purpose solver and allow for analysis of arbitrary tube circuitry and mal-distribution of fluid flow inside the tube circuits. A segment-by-segment approach within each tube was implemented, to account for two-dimensional non-uniformity of air distribution across the heat exchanger, and heterogeneous refrigerant flow patterns through a tube. Coupled heat exchangers with multiple fluids inside different subsets of tubes can be modeled and analyzed simultaneously. A further sub-dividing-segment model was developed in order to address the significant change of properties and heat transfer coefficients in the single-phase and two-phase regime when a segment experiences flow regime change. Object-oriented programming techniques were applied in developing the program to facilitate a modular, highly flexible and customizable design platform and in building a graphic user-friendly interface. A wide variety of working fluids and correlations of heat transfer and pressure drop are available at the user's choice. The model prediction with CoilDesigner was verified against experimentally determined data collected from a number of sources.  相似文献   

20.
A companion paper [Kim, J.-H., Braun, J.E., Groll, E.A., 2009. A hybrid method for refrigerant flow balancing in multi-circuit evaporators: upstream versus downstream control. International Journal of Refrigeration doi:10.1016/j.ijrefrig.2009.01.013 presented a hybrid approach for providing control of refrigerant flow distribution in evaporators that involves the use of small balancing valves in each circuit along with a primary expansion device to control the overall superheat from the evaporator. Furthermore, the companion paper demonstrated that the flow balancing valves should be located upstream rather than downstream of the evaporator in order to realize significant benefits. The current paper utilizes the model presented in the companion paper to more fully evaluate the effects of uneven air and refrigerant flow distributions and the benefits of upstream hybrid control in response to these effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号