首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Influence of hydrogen content on the impact toughness of Zr-2.5% Nb alloy was examined by carrying out instrumented drop weight tests in the temperature range of 25-250 °C using curved Charpy specimens fabricated from unirradiated pressure tubes of Indian Pressurized Heavy Water Reactor (IPHWR). Hydrogen content of the samples was between 10 and 170 ppm by weight (wppm). Sharp ductile-to-brittle-transition behaviour was demonstrated by hydrided materials. The temperature for the onset of transition increased with the increase in the hydrogen content of the specimens. The fracture surfaces of unhydrided specimen exhibited ductile fracture caused by micro void coalescence and tear ridges at lower temperatures and by fibrous fracture at intermediate and at higher temperatures. Except for the samples tested at the upper shelf energy levels, the fracture surfaces of all hydrided samples were suggestive of hydride assisted failure. In most cases the transverse cracks observed in the fracture path matched well with the hydride precipitate distribution and orientation.  相似文献   

2.
The effect of radial hydrides on the mechanical properties of stress-relief annealed Zircaloy-4 cladding was studied. Specimens were firstly hydrided to different target hydrogen levels between 100 and 600 wt ppm and then thermally cycled in an autoclave under a constant hoop stress to form radial hydrides by a hydride reorientation process. The effect of radial hydrides on the axial properties of the cladding was insignificant. On the other hand, the cladding ductility measurements decreased as its radial hydride content increased when the specimen was tested in plane strain tension. A reference hydrogen concentration for radial hydrides in the cladding was defined for assessing the fuel cladding integrity based on a criterion of the tensile strength 600 MPa. The reference hydrogen concentration increased with the specimen (bulk) hydrogen concentration to a maximum of ∼90 wt ppm at the bulk concentration ∼300 wt ppm H and then decreased towards higher concentrations.  相似文献   

3.
The relationship between hydrogen concentration precipitated as hydride particles and ultrasonic parameters, such as velocity and attenuation, was examined in Zircaloy-4 samples for potential applications in the Non-Destructive Test Field. Different amounts of hydrogen (up to 517 ppm) were introduced in the samples by gaseous charging. Ultrasonic attenuation measurements were performed with compressive waves at frequencies of 10 and 30 MHz, and propagation velocity measurements were performed at 10 MHz. Ultrasonic velocity showed an approximately linear increase with hydrogen concentration and it could be used as an assessment parameter when the hydrogen level is high enough. Attenuation versus hydrogen concentration has been fitted by a logarithmic equation at 10 MHz. At 30 MHz a fluctuating behavior of the attenuation prevented measurement of the hydrogen concentration.  相似文献   

4.
Heat capacities (Cp) of non-hydrogenated and hydrogenated Zircaloy-2 and high Fe Zircaloy were measured in the temperature range from 350 to 873 K, using a differential scanning calorimeter. The hydrogen concentrations in the two types of alloys ranged from 26 to 1004 ppm. The Cp values of the as-received alloys with 26-29 ppm hydrogen were in good agreement with literature data for low hydrogen Zircaloys. From this finding and observation of almost the same enthalpy changes for hydride dissolution for both alloys, it was concluded that there was no difference in Cp values between the two types of hydrogenated Zircaloys. The dissolution enthalpy of hydrides calculated from Cp data was 41.0 kJ/g-atom H. For Zircaloy-2 samples with higher hydrogen concentrations than 700 ppm, the phase transition from α+δ to α+β was observed at the eutectoid temperature of 824-827 K. Two types of models describing an additional heat capacity due to the hydride dissolution were presented based on the present Cp data and previously derived terminal solid solubility of hydrogen.  相似文献   

5.
Effectiveness of neutron imaging plate (NIP) method for hydrogen analysis is investigated by using standard samples with known hydrogen concentrations. A relationship between hydrogen concentration in Zircaloy tubes and numerical data in the NIP images was obtained by image analysis process. By using the relationship, local hydrogen concentrations in segregated tubes with heterogeneous hydrogen distribution were estimated in a small area; 0.1 × 0.1 mm2. Contribution of an oxide film in the tubes to the images is also investigated by using oxidized samples with and without hydrides. In the NIP images of the oxidized samples, oxide film was not recognized in the images of the sample. Results of numerical analysis also show no effect of the oxide film. These results show that the effect of oxygen in the image can be neglected when hydrogen analysis is performed on the Zircaloy tube with oxide film and hydrides by NIP method.  相似文献   

6.
The influence of hydrogen content and temperature on the fracture toughness of a Zircaloy-4 commercial alloy was studied in this work. Toughness was measured on CT specimens obtained from a rolled material. The analysis was performed in terms of J-integral resistance curves. The specimens were fatigue pre-cracked and hydrogen charged before testing them at different temperatures in the range of 293–473 K. A negative influence of the H content on material toughness was important even at very small concentrations, being partially restored when the test temperature increased. Except for some specimens with high H concentration tested at room temperature, the macroscopic fracture behaviour was ductile. The role of Zr-hydrides and Zr(Fe,Cr)2 precipitates in the crack growth and the dependence with hydrogen content were analysed by observation of the fracture surfaces and determination of the Zr(Fe,Cr)2 precipitates density on them.  相似文献   

7.
Hydrogen embrittlement is one of the major mechanisms responsible for the degradation of ductility of Zircaloy cladding materials. Currently the characterization of hydrogen concentration (HC) very often relies on destructive methods that are time-consuming and costly. In this research, an ultrasound-based nondestructive evaluation (NDE) technique is reported for the determination of HC in Zircaloy claddings. This ultrasound-based NDE technique employs a low frequency acoustic microscope (AM) with a PVDF/LFB transducer and a Fourier-based signal processing technique. With this AM technique, a relation between the ultrasound wavespeed and the HC of Zircaloy is established. A resolution of HC measurements with the current technique is demonstrated to be better than 200 ppm. This NDE technique has been developed with an aim to have a better resolution and also to be potentially applied to poolside inspection.  相似文献   

8.
In order to elucidate the terminal solid solubility during the dissolution of hydrides at heatup (TSSD) and during the precipitation of hydrides at cooldown (TSSP) for hydrogenated Zircaloy-2 and high Fe Zircaloy, differential scanning calorimetry (DSC) measurements have been carried out in the temperature range of 50-600 °C. The hydrogen concentrations in the two kinds of alloys ranged from 40 to 542 ppm. There was no difference in either TSSD or TSSP solvi between Zircaloy-2 and high Fe Zircaloy, and best-fit equations were derived for the two curves. In the present TSSP data, two different activation energies, separating into high and low temperature ranges at 260 °C, were obtained. Based on the widths of the DSC peak obtained during cooldown, the average precipitation (nucleation plus growth) rates of zirconium hydrides from super-saturated state were assessed. The activation energy of the precipitation rate was approximately equivalent to reported values of hydrogen diffusion coefficients of Zr and Zircaloys.  相似文献   

9.
Zirconium alloy Zr-2.5Nb has been hydrided to ZrHx (x = 1.15-2.0), and studied using microhardness and unconfined and confined compression techniques. At room temperature, results on Young’s modulus and yield strength of solid hydrides show that these mechanical properties remain about the same as the original zirconium alloy for hydrogen compositions up to about ZrH1.5. The levels of these properties start to drop when δ hydride becomes the major phase and reaches a minimum for the ε hydride phase. Between room temperature and 300 °C, Young’s modulus of solid hydrides decreases with temperature at about the same rate as it does for the original zirconium alloy.  相似文献   

10.
During service, Zr-2.5Nb pressure tubes of nuclear power reactors may be prone to suffer from crack growth by delayed hydride cracking (DHC). For a given hydrogen plus deuterium concentration there is a critical temperature (TC) below which DHC may occur. In this work, TC was measured for specimens cut from pressure tubes made in Canada (CANDU) and in Russia (RBMK). Hydrogen was added to the specimens to get concentrations ranging from 24 to 60 wt ppm. It was found that TC was higher than the corresponding precipitation temperature. The crack propagation velocity (VP), measured in axial direction, increases from a minimum at TC to a maximum at a temperature close but higher than the precipitation temperature. At lower temperatures, when hydride precipitates are present in the bulk, VP follows an Arrhenius law: VP = A exp(−Q/RT), with an activation energy Q of 66-68 kJ/mol for both tubes. The RBMK material presented lower velocities than CANDU one.  相似文献   

11.
Abstract

Zircaloy-2 tubes were hydrided up to a nominal content of 200 ppm and irradiated as fuel claddings in HBWR. Post-irradiation ring-tensile testing revealed that hydrogen enhances the irradiation-induced decrease of elongation and wall thickness reduction at room temperature. On the other hand, no effect of hydrogen was observed on ultimate tensile strength. With testings at 300°C, the effect was negligible on elongation too. From the evaluation of the test results including metallographic observation of ring specimens after fracture, it was concluded that segregation of hydrides due to thermal diffusion of hydrogen during irradiation was at least a part responsible to the above effect of hydrogen enhancing embrittlement.  相似文献   

12.
Hydriding kinetics of modified Zircaloy claddings was studied by the thermogravimetric method at 400 °C and the tube-burst technique at 315 °C. Some specimens were prefilmed with a thin oxide layer by air oxidation on both the inner and outer surfaces which were either pickled or blasted. In the thermogravimetric test, the hydriding rates of bare cladding specimens (no oxide prefilm) were in the range 0.9-1.6 mg/cm2 h with little effect of the surface treatment. Incubation times were less than 1 h or even zero. In the tube-burst test, immediate and extensive hydrogen uptake was observed for these non-coated specimens. On the other hand, the cladding specimens with oxide prefilm exhibited lower hydriding rates ranging from 0.01 to 0.05 mg/cm2 h and incubation times increased to 42 h. In addition, no hydrogen uptake was observed for all oxide-coated specimens for 100-750 h.  相似文献   

13.
In this work, the mechanical behavior of as-received and hydrogenated Zircaloy-4 fuel claddings was investigated by the newly developed advanced expansion due to compression (A-EDC) test and the conventional uniaxial tension (UT) test at room temperature, in order to, respectively, understand the hydride-induced embrittlement in tube longitudinal and hoop directions. The UT experimental results showed that the mechanical strength in the longitudinal direction slightly increased with hydrogen content, whereas the maximum strain decreased greatly with hydrogen increasing. In the case of A-EDC tests, the mechanical performance in the hoop direction seemed insensitive to the hydrogen content; no obvious decline in maximum strain was observed until 800 ppm H. The comparison between these two tests clearly reveals that the hydride-induced embrittlement is preferential to occur in the longitudinal direction, compared with the sluggish response in the hoop direction, which implied the enhanced ductility anisotropy due to hydrides. In the post-tests observation, the fracture morphologies became gradually distinct for the as-received and hydrided samples examined by UT and A-EDC methods, and different orientation relationships between the applied stresses and hydrides distribution would be responsible for that distinction.  相似文献   

14.
The hydrogen uptake behavior during corrosion tests for electron beam welding specimens made out of Zircaloy-4 and zirconium alloys with different compositions was investigated. Results showed that the hydrogen uptake in the specimens after corrosion tests increased with increasing Cr content in the molten zone. This indicated that Cr element significantly affected the hydrogen uptake behavior. Fe and Cr have a low solubility in α-Zr and exist mainly in the form of Zr(Fe,Cr)2 precipitates, which is extremely reactive with hydrogen in its metallic state. It is concluded that the presence of Zr(Fe,Cr)2 second phase particles (SPPs) is responsible for the increase in the amount of hydrogen uptake in the molten zone of the welding samples after corrosion, as Zr(Fe,Cr)2 SPPs embedded in α-Zr matrix and exposed at the metal/oxide interface could act as a preferred path for hydrogen uptake.  相似文献   

15.
In-pile electrochemical measurements were performed in order to investigate the effect of radiation on the electrochemical corrosion behaviour of AISI 304 and AISI 316 in PWR primary water (400 ppm B and 2 ppm Li) at 300 °C. The corrosion potential was continuously monitored during the whole irradiation period. Polarization resistance measurements and electrochemical impedance spectroscopy were performed at regular intervals. Polarization curves were recorded halfway through and at the end of each reactor cycle. All measurements were performed on both an in-flux and an out-of-flux 3-electrode electrochemical cell, each containing a platinum high-temperature reference electrode and an yttrium-stabilized zirconia (YSZ) reference electrode. The results show a small influence of radiation on the corrosion potential. However, the impedance data show a marked difference between in-flux and out-of-flux. The Nyquist diagram shows one semi-circle and one flattened semi-circle of which a branch leaps off indicating an R-(R//C)-(CPE//RW) type equivalent circuit.  相似文献   

16.
An analysis method for the determination of H and D concentrations in Zr-2.5Nb material has been established based on hot vacuum extraction and isotope dilution mass spectrometry. Hot vacuum extraction enables complete removal of the hydrogen isotopes from the sample. The isotope dilution technique is used to determine quantitatively the amount of hydrogen isotopes in the extracted gas. Methods for preparing standards of H, D or H and D in Zr-2.5Nb have also been established. These ‘in-house’ standards are used to assess the performance of the analysis method. The analysis uncertainty, based on the determined content relative to the dosed H or D isotope content of each standard, is 1% (at a level of confidence of 95%) for samples containing greater than ∼5 μmoles H or D. The uncertainty increases to 5% as the sample content decreases to 0.5 μmoles H or D. The uncertainty of this analysis method is well within the requirements for surveillance examinations of CANDU® reactors and post-irradiation examinations of reactor components.  相似文献   

17.
In this work, influence of hydrogen and temperature on the fracture toughness parameters of unirradiated, cold worked and stress relieved (CWSR) Zr–2.5Nb pressure tube alloys used in Indian Pressurized Heavy Water Reactor is reported. The fracture toughness tests were carried out using 17 mm width curved compact tension specimens machined from gaseously hydrogen charged tube-sections. Metallography of the samples revealed that hydrides were predominantly oriented along axial–circumferential plane of the tube. Fracture toughness tests were carried out in the temperature range of 30–300 °C as per ASTM standard E-1820-06, with the crack length measured using direct current potential drop (DCPD) technique. The fracture toughness parameters (JQ, JMax and dJ/da), were determined. The critical crack length (CCL) for catastrophic failure was determined using a numerical method. It was observed that for a given test temperature, the fracture toughness parameters representing crack initiation (JQ) and crack propagation (JMax, and dJ/da) is practically unaffected by hydrogen content. Also, for given hydrogen content, all the aforementioned fracture toughness parameters increased with temperature to a saturation value.  相似文献   

18.
The fracture behavior under near plane-strain deformation conditions of Zircaloy-4 sheet containing solid hydride blisters of various depths has been examined at 25 and 300 °C. The study was based on material with either model ‘blisters’ having diameters of 2 and 3 mm or a continuous layer of hydride; in all cases, the substrate material contained discrete hydride precipitates. The fracture strains decrease rapidly with increasing hydride blister/layer depth to levels of about 100 μm deep, and then remain roughly constant. For a given blister depth, the material is significantly more ductile at 300 °C than at room temperature although measurable ductility is retained even at 25 °C and for large blister depths. The material is somewhat more ductile if the hydride is in the form of a blister than in the form of a continuous layer (rim). The hydride blisters/layers are brittle at all temperatures, and crack shortly after yielding of the ductile substrate. Consequently, both experimental evidence and analytical modeling indicate that fracture of the sheet is controlled by the crack growth resistance of the substrate at 25 °C. At elevated temperatures, the hydride particles within the substrate are quite ductile, inhibit crack growth, and failure eventually occurs due to a shear instability.  相似文献   

19.
Increased plasticity is reported in Ti alloys, stainless steels and Pd by the introduction of hydrogen. The dissolved hydrogen in zirconium and its alloys which have similar properties as those of titanium and its alloys, can modify the creep properties of the matrix. Hydrogen, formed during the corrosion reaction of Zr-2.5%Nb pressure tube, in a CANDU design nuclear reactor, with the coolant can ingress into the metal matrix. This absorbed hydrogen can lead to an unexpected increase in length and in diameter of the pressure tube. In order to evaluate the effect of hydrogen on the creep behavior of the pressure tube material, tensile specimens with longitudinal and transverse orientations were hydrided to 65 and 160 wt ppm and creep tested at 723 K over a stress range. The combined influence of hydrogen and specimen orientations on creep rate is evaluated, and an attempt is made to explain the results using the deformation mechanisms reported in literature.  相似文献   

20.
The fatigue behaviour of unhydrided and hydrided 20% cold-worked zircaloy-2 reactor pressure-vessel tubing has been studied for fluctuating tension at room-temperature and 300 °C and for reversed torsion at room-temperature. At room-temperature, high concentrations of zirconium hydride markedly reduce the critical crack length. This effect is attributed to a lowering of the fracture toughness, since hydrides fracture in the path of crack propagation and promote matrix cleavage. At 300 °C, hydride particles constrained by the matrix are plastically deformed without fracturing; the toughness is probably unaffected by the presence of hydride.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号